Macroscopic Behavior and Damage of a Particulate Composite with a Crosslinked Polymer Matrix

Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař
2011 ◽  
Vol 465 ◽  
pp. 129-132
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

Particulate composites with crosslinked polymer matrix and solid fillers are one of important classes of materials such as construction materials, high-performance engineering materials, sealants, protective organic coatings, dental materials, or solid explosives. The main focus of a present paper is an estimation of the macroscopic Young’s modulus and stress-strain behavior of a particulate composite with polymer matrix. The particulate composite with a crosslinked polymer matrix in a rubbery state filled by an alumina-based mineral filler is investigated by means of the finite element method. A hyperelastic material behavior of the matrix was modeled by the Mooney-Rivlin material model. Numerical models on the base of unit cell were developed. The numerical results obtained were compared with experimental stress-strain curve and value of initial Young’s modulus. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a crosslinked polymer matrix.


2011 ◽  
Vol 47 (6) ◽  
pp. 627-634 ◽  
Author(s):  
L. Náhlík ◽  
P. Hutař ◽  
M. Dušková ◽  
K. Dušek ◽  
B. Máša

2012 ◽  
Vol 245 ◽  
pp. 138-143 ◽  
Author(s):  
Zdeněk Majer ◽  
Luboš Náhlík

Particulate composites with polymer matrix and solid fillers are one of important types of materials. Generally, these materials are usually used as construction materials, high-performance engineering materials or protective organic coatings. The main aim of a present paper is an estimation of the micro-crack behavior in the particulate composite with non-linear polymer matrix. The polymer matrix filled by magnesia-based mineral filler is investigated by means of the finite element method. A non-linear material behavior of the matrix was obtained from experiment as well as properties of mineral filler. Numerical model on the base of representative plane element (RPE) was developed. The results show that the presence of interphase between particle and matrix can improve fracture toughness of polymer particle composite through debonding process. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with respect to interphase.


2012 ◽  
Vol 525-526 ◽  
pp. 173-176 ◽  
Author(s):  
Zdeněk Majer

Particulate composite with soft polymer matrix and rigid mineral fillers are one of most frequently used construction and engineering materials. The main focus of a present paper is an estimation of the load influence on behavior of micro-crack placed in close proximity to the particle with interphase in soft matrix. The particulate composite with polymer matrix filled by magnesium-based mineral fillers is investigated by means of the finite element method. A non-linear material behavior of the matrix was considered. Numerical model on the base of representative plane element (RPE) was developed. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with soft polymer matrix.


Author(s):  
TESSYMOL MATHEW ◽  
SUNNY KURIAKOSE

Polymer-bound cobalt(II) porphyrins were studied for their dioxygen—binding capacity. Tetra—aminoporphyrins were anchored on a divinylbenzene (DVB)-crosslinked chloromethyl polystyrene network. The crosslinked, solid polymers were swelled in chloroform and the swollen polymers were used for the entire studies. Ortho-, meta- and para-substituted porphyrin systems were developed by adjusting the bonding position with the help of suitably substituted aminoporphyrins. The products were characterized by chemical and spectroscopic methods. Cobalt(II) complexes of polymeric porphyrins were synthesized and characterized by electronic and ESR spectral methods. The spectra gave evidence for the systematic variation of electronic properties in ortho, meta and para compounds and for the dioxygen-binding capacity of cobalt complexes. These results are discussed.


2016 ◽  
Vol 54 (2) ◽  
pp. 257-282 ◽  
Author(s):  
Ester Laguna-Gutierrez ◽  
Javier Escudero ◽  
Vipin Kumar ◽  
Miguel A Rodriguez-Perez

The semicrystalline character of low density polyethylene adds severe difficulties to its foamability by a batch process in which the gas is dissolved into the polymer matrix under subcritical conditions. To improve the low density polyethylene foamability, two strategies have been used: the addition of nanoclays and a partial crosslinking of the polymer matrix. On the one hand, the use of nanoparticles is suggested because they act as heterogeneous nucleating sites reducing the cell size and increasing the cell density. On the other hand, crosslinking is also adopted as a solution because both the crystallinity (and hence, the gas solubility and diffusivity) and the extensional rheological properties of the polymer matrix are highly influenced by the crosslinking degree achieved. Results indicate that despite the fact that the presence of nanoclays deteriorates the rheological behaviour of the nanocomposites and, hence, the later foaming behaviour, the use of partially crosslinked polymer matrices allows achieving high expansion ratios (around 7.5) as well as enhanced cellular structures with cell sizes of approximately 15 µm.


2018 ◽  
Vol 25 (2) ◽  
pp. 383-388 ◽  
Author(s):  
Atheer M. Almasri

AbstractThe thermal conductivity of particulate composite models is well documented in the literature. This paper attempts to fit the experimental data for the thermal conductivity of polymer nanocomposites to a three-phase Krenchel model. The use of this model is applicable for structures that consist of a polymer matrix, a nanofiller, and an interfacial layer around the nanoparticles. The effect of Kapitza’s thermal resistance is implemented in the model along with the assumption that the nanofillers are cylindrical and well connected to each other; however, no parameters related to any type of dispersants or the dispersion techniques are stated in the model. The results of the three-phase Krenchel model were validated using the experimental data of thermal conductivity of multiwall carbon nanotubes embedded in polypropylene matrix nanocomposites. It was found that the model was in good agreement with the experimental thermal conductivity data. Moreover, the results from the model showed that the filler geometrical packing factor was 0.75; consequently, the carbon nanotubes formed bundles of several cylindrical tubes. The length of the interface between the nanotubes and the polymer matrix was around 1 Å. Finally, the thermal conductivity of the composite bundle cylinder was 21.63 W/(m K).


Author(s):  
J. A. N. Zasadzinski ◽  
R. K. Prud'homme

The rheological and mechanical properties of crosslinked polymer gels arise from the structure of the gel network. In turn, the structure of the gel network results from: thermodynamically determined interactions between the polymer chain segments, the interactions of the crosslinking metal ion with the polymer, and the deformation history of the network. Interpretations of mechanical and rheological measurements on polymer gels invariably begin with a conceptual model of,the microstructure of the gel network derived from polymer kinetic theory. In the present work, we use freeze-etch replication TEM to image the polymer network morphology of titanium crosslinked hydroxypropyl guars in an attempt to directly relate macroscopic phenomena with network structure.


Sign in / Sign up

Export Citation Format

Share Document