Micro-Crack Propagation in Particulate Composite with Different Types of Matrix

2012 ◽  
Vol 245 ◽  
pp. 138-143 ◽  
Author(s):  
Zdeněk Majer ◽  
Luboš Náhlík

Particulate composites with polymer matrix and solid fillers are one of important types of materials. Generally, these materials are usually used as construction materials, high-performance engineering materials or protective organic coatings. The main aim of a present paper is an estimation of the micro-crack behavior in the particulate composite with non-linear polymer matrix. The polymer matrix filled by magnesia-based mineral filler is investigated by means of the finite element method. A non-linear material behavior of the matrix was obtained from experiment as well as properties of mineral filler. Numerical model on the base of representative plane element (RPE) was developed. The results show that the presence of interphase between particle and matrix can improve fracture toughness of polymer particle composite through debonding process. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with respect to interphase.

2013 ◽  
Vol 592-593 ◽  
pp. 445-448 ◽  
Author(s):  
Zdeněk Majer ◽  
Petr Marcián ◽  
Luboš Náhlík ◽  
Pavel Hutař ◽  
Zdeněk Knésl

In recent years, particle reinforced composites are widely used due their mechanical properties as construction materials, high-performance engineering materials or protective organic coatings. The paper was mainly focused on the estimating of the interactions of the micro-crack and the particles in the particulate polymer composites. A non-linear material behavior of the matrix was obtained from the experiment and it was used to investigation by means of the finite element method - using ANSYS software. A two-dimensional numerical model was developed and a micro-crack propagation direction was calculated based on the assumption of the linear elastic fracture mechanics. The results indicated that the presence of the interphase between particle and matrix can improve the fracture toughness of the polymer particle composites through debonding process. The paper can contribute to a better understanding of the behavior and failure of the composites with the polymer matrix reinforced by the rigid particles.


2012 ◽  
Vol 525-526 ◽  
pp. 173-176 ◽  
Author(s):  
Zdeněk Majer

Particulate composite with soft polymer matrix and rigid mineral fillers are one of most frequently used construction and engineering materials. The main focus of a present paper is an estimation of the load influence on behavior of micro-crack placed in close proximity to the particle with interphase in soft matrix. The particulate composite with polymer matrix filled by magnesium-based mineral fillers is investigated by means of the finite element method. A non-linear material behavior of the matrix was considered. Numerical model on the base of representative plane element (RPE) was developed. The conclusions of this paper can contribute to a better understanding of the behavior of micro-crack in particulate composites with soft polymer matrix.


2011 ◽  
Vol 465 ◽  
pp. 129-132
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

Particulate composites with crosslinked polymer matrix and solid fillers are one of important classes of materials such as construction materials, high-performance engineering materials, sealants, protective organic coatings, dental materials, or solid explosives. The main focus of a present paper is an estimation of the macroscopic Young’s modulus and stress-strain behavior of a particulate composite with polymer matrix. The particulate composite with a crosslinked polymer matrix in a rubbery state filled by an alumina-based mineral filler is investigated by means of the finite element method. A hyperelastic material behavior of the matrix was modeled by the Mooney-Rivlin material model. Numerical models on the base of unit cell were developed. The numerical results obtained were compared with experimental stress-strain curve and value of initial Young’s modulus. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a crosslinked polymer matrix.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz6767 ◽  
Author(s):  
Patricia Jastrzebska-Perfect ◽  
George D. Spyropoulos ◽  
Claudia Cea ◽  
Zifang Zhao ◽  
Onni J. Rauhala ◽  
...  

Bioelectronic devices should optimally merge a soft, biocompatible tissue interface with capacity for local, advanced signal processing. Here, we introduce an organic mixed-conducting particulate composite material (MCP) that can form functional electronic components by varying particle size and density. We created MCP-based high-performance anisotropic films, independently addressable transistors, resistors, and diodes that are pattern free, scalable, and biocompatible. MCP enabled facile and effective electronic bonding between soft and rigid electronics, permitting recording of neurophysiological data at the resolution of individual neurons from freely moving rodents and from the surface of the human brain through a small opening in the skull. We also noninvasively acquired high–spatiotemporal resolution electrophysiological signals by directly interfacing MCP with human skin. MCP provides a single-material solution to facilitate development of bioelectronic devices that can safely acquire, transmit, and process complex biological signals.


2012 ◽  
Vol 525-526 ◽  
pp. 25-28
Author(s):  
Bohuslav Máša ◽  
Luboš Náhlík ◽  
Pavel Hutař

The main aim of the paper is an estimation of the macroscopic mechanical properties of particulate composites using numerical methods. Matrix of the considered composite was cross-linked polymethyl methacrylate - PMMA in a rubbery state, which exhibits hyperelastic behaviour. The three parameter Mooney Rivlin material model, which is based on the strain energy density function, was chosen for description of the matrix behaviour. Alumina based particles (Al2O3) were used as a filler. Numerical modelling based on the finite element method (FEM) was performed to determine stress-strain curve of the considered particulate composite. Representative volume element (RVE) model was chosen for FE analyses as a modelling approach of a composite microstructure. Various geometry arrangements of particles and various directions of loading have been considered and composite anisotropy has been investigated. A good agreement between numerical calculations with damage model and experimental data has been found and the described method may have a great potential for numerical modelling of composite behaviour and design of new particulate composite materials.


Composite materials, be they highly oriented continous-fibre structural materials or short-fibre and even particulate composites, remain critically dependent upon matrix properties. Interest in the use of thermoplastic matrices has spread from conventional injection moulding composites into collimated continuous fibre materials. As the critical applications of such materials have been explored, so the demands on matrix properties have become clearer, and potentially more stringent. The demand for advanced properties is set primarily by response of the matrix, and fibre matrix interface to hostile working environments involving temperature, chemical attack, and physical abuse. Such properties are a reflection of molecular structures and their resulting morphology, but the achievement of desirable properties is bounded also by synthesis on the one hand and component fabrication on the other. By definition, such highly engineered materials and their related processes must exhibit ‘reliability’. The paper attempts to relate the interaction between structure and properties for such materials concentrating on high-performance structural composites and a view of the broad requirements if such materials are to have use.


2001 ◽  
Author(s):  
Y. W. Kwon ◽  
C. T. Liu

Abstract Hydrostatic pressure affects the damage growth in a particulate composite. As a result, an analytical model was presented to represent the damage growth in a particulate composite under various hydrostatic pressures. The model was based on a multi-level approach with damage description at the micro-level. A damage theory was presented to describe the material behavior under hydrostatic pressure. The effect of hydrostatic pressure was introduced to the damage theory through the damage function that was assumed to be a function of both deviatoric and volumetric strain energy densities. The predicted stress-strain curves with hydrostatic pressure compared well with the experimental data. Furthermore, the initial crack size at a notch tip was studied with and without hydrostatic pressure. The initial crack size determined from the computer modeling and simulation agreed well with the measured data with or without hydrostatic pressure.


2017 ◽  
Vol 731 ◽  
pp. 86-91
Author(s):  
Tomáš Vlach ◽  
Lenka Laiblová ◽  
Petr Hájek

Technical textiles and composite materials in general becomes more and more popular for the reinforcing of concrete elements. These materials are very often combined with high performance fine grain concretes with big surface quality. High performance concretes developed rapidly in the last decade and therefore also composite materials must be developed hand in hand with concrete. One possibility is to further imrove basic material or roving itself, but this article is focused on improving of the polymer matrix. As a matrix in this presented article was used epoxy resin. The purpose of the experiment was to improve the tensile parameters of composite reinforcement by adding fillers into the matrix. Fillers improve interaction between individual fibers and thatks to that improve parameters of entire composite.


2021 ◽  
Author(s):  
RYAN COY ◽  
RAFAEL GOMEZ CONSARNAU ◽  
IAN HOLMES ◽  
DANIEL WHISLER

Asphalt can be considered a particulate composite with almost no tensile strength, that is, the only physical link between the matrix (bitumen) and the particles (gravel) is the cohesive strength of the bond itself and the aggregate simply breaks away from the binder under any number of tension-based loads such as earth shifts, heavy loads, and even moisture. Over the course of a few months, these breaks lead to larger cracks, potholes, and damaged entire road sections that require significant investment much earlier than the expected 15-year lifecycle. Increasing the strength and modulus of asphalt can improve its durability, extend its lifespan, and reduce its maintenance costs. However, as most asphalt is usually recycled during rehabilitation, improving strength cannot come at the expense of the existing infrastructure support system, i.e., materials and technologies should be compatible with road resurfacing equipment and practices. Short composite fibers have high modulus and strength but are easily broken up by road milling machines, making them ideal candidates to mix into the asphalt during rehabilitation. Additionally, by deliberately limiting the fiber size, this will have a major ancillary benefit for the environment: allowing the use of off-fall composite scraps from the manufacturing sectors that are often chopped and relegated to landfills. This investigation examines the material behavior from both experimental and numerical perspective on the inclusion of short fibers for reinforcing asphalt, creating a dual fiber and particle composite material system. Asphalt by its very nature is a relatively soft material with high strains until failure under some conditions, and brittle under others, making this a complex material system combining both hyperelastic and elastic-brittle response. Validation studies are examined for this unique material under various quasi-static to dynamic loading rates to create a material system for extended finite element analysis in improved infrastructure designs.


2014 ◽  
Vol 606 ◽  
pp. 261-264
Author(s):  
Zdeněk Majer ◽  
Pavel Hutař ◽  
Martin Ševčík ◽  
Luboš Náhlík

The composites are widely used due to their advanced mechanical properties. Particulate composites with polymer matrix were studied with regard to micro-crack propagation in the matrix. A three phase numerical model was created. Linear elastic material properties of particle and matrix were taken from experiment. Using numerical simulations (based on the finite element method) the influence of interphase properties on micro-crack propagation was studied. The results of this paper can contribute to a better understanding of the micro-crack propagation in the particulate composites with respect to the interphase.


Sign in / Sign up

Export Citation Format

Share Document