Genetic Types of Large-Scale Landslides Induced by the Wenchuan Earthquake

2012 ◽  
pp. 511-520 ◽  
Author(s):  
Q. Xu ◽  
S. Zhang ◽  
X. J. Dong
2014 ◽  
Vol 978 ◽  
pp. 27-30
Author(s):  
Si Ru Qian

After the WenChuan earthquake in may 12,2008,Many province government built the temporary houses for earthquake disaster area.For the first time, they initiate such large scale project, there are many problems emerged during the process of construction such problem like economy ,environment, engineering materials and technology. In this article, we collect problems and analysis them ,seek for the possible measures of construct the temporary house and the effective way to rebuilt the disaster area.


2017 ◽  
Vol 43 (3) ◽  
pp. 1361 ◽  
Author(s):  
E. Lekkas

The Wenchuan earthquake of the 12th of May 2008, in Sichuan county of China can be classified as a large scale event based on the tectonic structures that triggered the earthquake and the effects caused on the human, structural and natural environment. The aim of this paper is to present the geotectonic and seismotectonic regime of the earthquake affected region based on field data along the seismic fault zone and an attempt is made towards the: (i) estimation of the intensity values according to EMS1998 (European Microseismic Scale, 1998) and ESI2007 (Environmental Seismic Intensity Scale, 2007) and the determination of their geographical distribution in a macroscale, (ii) interpretation of the intensity values data and their distribution according to the seismotectonic, geodynamic and geotechnical regime, and (iii) conduction of a comparative evaluation review on the application of both EMS1998 and ESI2007. The application of both EMS1998 and ESI2007 and the comparative evaluation of the results indicate that the estimated values of EMS1998 and ESI2007 were almost in agreement, despite the fact that the geographical locations of assessment data were different suggesting that the application and use of both scales appears to represent a useful and reliable tool for seismic hazard estimation.


2011 ◽  
Vol 48 (1) ◽  
pp. 128-145 ◽  
Author(s):  
Chuan Tang ◽  
Jing Zhu ◽  
Xin Qi

The Wenchuan earthquake (magnitude Ms = 8.0) of 12 May 2008 triggered widespread and large-scale landslides over an area of about 50 000 km2. A study was undertaken to determine the primary factors associated with seismic landslide occurrence. An index-based approach used to assess earthquake-triggered landslide hazard in the central part of the Wenchuan earthquake area affected is described. Slope gradient, relief amplitude, lithology, bedding–slope relations, fault proximity, stream proximity, and antecedent rainfall are recognized as factors that may have had an important influence on landslide occurrence. The assessment of the influence of each of these factors is presented through use of a series of maps showing areas of low, moderate, high, and very high landslide hazard. Areas identified as having “very high and high landslide hazard” were located along the earthquake-source fault and along both banks of the Jian River. The role of rainfall is very significant for future landslide occurrence in the earthquake area. The results of this study will assist decision makers in the selection of safe sites during the reconstruction process. The maps can also be used for landslide risk management in the study area.


Landslides ◽  
2021 ◽  
Author(s):  
Fan Yang ◽  
Xuanmei Fan ◽  
Srikrishnan Siva Subramanian ◽  
Xiangyang Dou ◽  
Junlin Xiong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5191
Author(s):  
Chang Li ◽  
Bangjin Yi ◽  
Peng Gao ◽  
Hui Li ◽  
Jixing Sun ◽  
...  

Landslide inventories could provide fundamental data for analyzing the causative factors and deformation mechanisms of landslide events. Considering that it is still hard to detect landslides automatically from remote sensing images, endeavors have been carried out to explore the potential of DCNNs on landslide detection, and obtained better performance than shallow machine learning methods. However, there is often confusion as to which structure, layer number, and sample size are better for a project. To fill this gap, this study conducted a comparative test on typical models for landside detection in the Wenchuan earthquake area, where about 200,000 secondary landslides were available. Multiple structures and layer numbers, including VGG16, VGG19, ResNet50, ResNet101, DenseNet120, DenseNet201, UNet−, UNet+, and ResUNet were investigated with different sample numbers (100, 1000, and 10,000). Results indicate that VGG models have the highest precision (about 0.9) but the lowest recall (below 0.76); ResNet models display the lowest precision (below 0.86) and a high recall (about 0.85); DenseNet models obtain moderate precision (below 0.88) and recall (about 0.8); while UNet+ also achieves moderate precision (0.8) and recall (0.84). Generally, a larger sample set can lead to better performance for VGG, ResNet, and DenseNet, and deeper layers could improve the detection results for ResNet and DenseNet. This study provides valuable clues for designing models’ type, layers, and sample set, based on tests with a large number of samples.


Sign in / Sign up

Export Citation Format

Share Document