Peierls Argument and Duality Transformations

Author(s):  
Andreas Wipf
2020 ◽  
pp. 161-188
Author(s):  
Giuseppe Mussardo

Chapter 4 begins by discussing the Peierls argument, which allows us to prove the existence of a phase transition in the two-dimensional Ising model. The remaining sections of the chapter deal with duality transformations (duality in square, hexagonal and triangular lattices) that link the low- and high-temperature phases of several statistical models. Particularly important is the proof of the so-called star-triangle identity. This identity will be crucial in the later discussion of the transfer matrix of the Ising model. Finally, it covers the aspect of duality in two dimensions. An appendix provides information about the Poisson sum formula.


1995 ◽  
Vol 10 (05) ◽  
pp. 441-450 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

We study the target space duality transformations in p-branes as transformations which mix the world volume field equations with Bianchi identities. We consider an (m+p+1)-dimensional space-time with p+1 dimensions compactified, and a particular form of the background fields. We find that while a GL (2) = SL (2) × R group is realized when m = 0, only a two-parameter group is realized when m > 0.


1993 ◽  
Vol 08 (25) ◽  
pp. 2403-2412 ◽  
Author(s):  
AMITABHA LAHIRI

I present the reduction of phase space of the theory of an antisymmetric tensor potential coupled to an Abelian gauge field, using Dirac's procedure. Duality transformations on the reduced phase space are also discussed.


1999 ◽  
Vol 14 (14) ◽  
pp. 2257-2271 ◽  
Author(s):  
KASPER OLSEN ◽  
RICARDO SCHIAPPA

We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one-loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one-loop order. The issue of heterotic anomalies and their cancellation is addressed from this duality constraining viewpoint.


1981 ◽  
Vol 47 (18) ◽  
pp. 1238-1241 ◽  
Author(s):  
Deepak Dhar ◽  
Mustansir Barma ◽  
Mohan K. Phani

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Mohammad R. Garousi

Abstract Recently, it has been shown that the gauge invariance requires the minimum number of independent couplings for B-field, metric and dilaton at order $$\alpha '^2$$α′2 to be 60. In this paper we fix the corresponding 60 parameters in string theory by requiring the couplings to be invariant under the global T-duality transformations. The Riemann cubed terms are exactly the same as the couplings that have been found by the S-matrix calculations.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Wei He

Abstract We study a relation between asymptotic spectra of the quantum mechanics problem with a four components elliptic function potential, the Darboux-Treibich-Verdier (DTV) potential, and the Omega background deformed N=2 supersymmetric SU(2) QCD models with four massive flavors in the Nekrasov-Shatashvili limit. The weak coupling spectral solution of the DTV potential is related to the instanton partition function of supersymmetric QCD with surface operator. There are two strong coupling spectral solutions of the DTV potential, they are related to the strong coupling expansions of gauge theory prepotential at the magnetic and dyonic points in the moduli space. A set of duality transformations relate the two strong coupling expansions for spectral solution, and for gauge theory prepotential.


2005 ◽  
Vol 02 (04) ◽  
pp. 633-655
Author(s):  
JOSÉ M. ISIDRO

Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kähler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kähler potential.


Sign in / Sign up

Export Citation Format

Share Document