Self-Organized Three Dimensional Feature Extraction of MRI and CT

Author(s):  
Satoru Morita
2018 ◽  
Vol 115 (48) ◽  
pp. 12188-12193 ◽  
Author(s):  
Amanda S. Chin ◽  
Kathryn E. Worley ◽  
Poulomi Ray ◽  
Gurleen Kaur ◽  
Jie Fan ◽  
...  

Our understanding of the left–right (LR) asymmetry of embryonic development, in particular the contribution of intrinsic handedness of the cell or cell chirality, is limited due to the confounding systematic and environmental factors during morphogenesis and a ack of physiologically relevant in vitro 3D platforms. Here we report an efficient two-layered biomaterial platform for determining the chirality of individual cells, cell aggregates, and self-organized hollow epithelial spheroids. This bioengineered niche provides a uniform defined axis allowing for cells to rotate spontaneously with a directional bias toward either clockwise or counterclockwise directions. Mechanistic studies reveal an actin-dependent, cell-intrinsic property of 3D chirality that can be mediated by actin cross-linking via α-actinin-1. Our findings suggest that the gradient of extracellular matrix is an important biophysicochemical cue influencing cell polarity and chirality. Engineered biomaterial systems can serve as an effective platform for studying developmental asymmetry and screening for environmental factors causing birth defects.


2015 ◽  
Vol 80 (9-12) ◽  
pp. 1741-1749 ◽  
Author(s):  
Haiyong Chen ◽  
Weipeng Liu ◽  
Liying Huang ◽  
Guansheng Xing ◽  
Meng Wang ◽  
...  

1999 ◽  
Vol 583 ◽  
Author(s):  
Y-C. Chen ◽  
V. Bucklen ◽  
K. Rajan ◽  
C. A. Wang ◽  
G. W. Charache ◽  
...  

AbstractMicrostructures of lattice-matched Ga1−xInxAsySb1−y grown by organometallic vapor phase epitaxy (OMVPE) on (100) 6°→ (111)B GaSb substrates have been examined in detail by transmission electron microscopy. A three-dimensional self-organized composition modulation (SOCM) microstructure was found with an orientation inclined 10 degrees to the surface orientation when viewed in (011) cross-section. The periodicity of the SOCM increased from ˜13 nm to 20 nm, as x increased from 0.1 to 0.2 while the orientation of the SOCM remained the same. The fact that the orientation was not sensitive to the component composition indicated that substrate misorientation plays a major role in deciding this SOCM orientation. This may open fabrication opportunities for three-dimensional natural superlattices by engineering on the substrate misorientation.


Author(s):  
Tae-Yun Kim ◽  
Hae-Gil Hwang ◽  
Heung-Kook Choi

We review computerized cancer cell image analysis and visualization research over the past 30 years. Image acquisition, feature extraction, classification, and visualization from two-dimensional to three-dimensional image algorithms are introduced with case studies of bladder, prostate, breast, and renal carcinomas.


2016 ◽  
Vol 31 (9) ◽  
pp. 889-896
Author(s):  
马鑫 MA Xin ◽  
魏仲慧 WEI Zhong-hui ◽  
何昕 HE Xin ◽  
于国栋 YU Guo-dong

2005 ◽  
Vol 890 ◽  
Author(s):  
Dongchoul Kim ◽  
Wei Lu

ABSTRACTA thin polymer film subjected to an electrostatic field may lose stability at the polymer-air interface, leading to uniform self-organized pillars emerging out of the film surface. This paper presents a three dimensional dynamic model to account for the behavior. The coupled diffusion, viscous flow, and dielectric effect are incorporated into a phase field framework. Numerical simulations reveal rich dynamics of the pattern formation process and the substrate effect. The pillar size is insensitive to the film thickness, but the distance between pillars and the growth rate are significantly affected. The study suggests an approach to control structural formation in thin films with a designed electric field.


2004 ◽  
Vol 22 (9) ◽  
pp. 2091-2100 ◽  
Author(s):  
T. Yoshimura ◽  
T. Inoguchi ◽  
T. Yamamoto ◽  
S. Moriya ◽  
Y. Teramoto ◽  
...  

Author(s):  
Lei Sun ◽  
Abir Qamhiyah

Abstract A new procedure for extracting form features from solid models with non-planar surfaces is presented in this paper. In the procedure, a surface is selected as the unit for feature representation, i.e. “feature primitive.” Three-dimensional wavelet transforms are applied to code and classify surfaces in a CAD model. Form features are then extracted by clustering the coded surfaces. Two wavelet bases, Harr and Daubechies with different vanishing moments, have been implemented. An example is presented to demonstrate the proposed procedure.


Sign in / Sign up

Export Citation Format

Share Document