axial pile head displacement

Keyword(s):  
Author(s):  
Bengt Fellenius

On April 4, 2018, 209 days after driving, a static loading test was performed on a 50 m long, strain-gage instrumented, square 275-mm diameter, precast, shaft-bearing (“floating”) pile in Göteborg, Sweden. The soil profile consisted of a 90 m thick, soft, postglacial, marine clay. The groundwater table was at about 1.0 m depth. The undrained shear strength was about 20 kPa at 10 m depth and increased linearly to about 80 kPa at 55m depth. The load-distribution at the peak load correlated to an average effective stress beta-coefficient of 0.19 along the pile or, alternatively, a unit shaft shear resistance of 15 kPa at 10 m depth increasing to about 65 kPa at 50 m depth, indicating an α-coefficient of about 0.80. Prior to the test, geotechnical engineers around the world were invited to predict the load-movement curve to be established in the test—22 predictions from 10 countries were received. The predictions of pile stiffness, and pile head displacement showed considerable scatter, however. Predicted peak loads ranged from 65% to 200% of the actual 1,800-kN peak-load, and 35% to 300% of the load at 22-mm movement.


2009 ◽  
Vol 13 (3) ◽  
pp. 143-152 ◽  
Author(s):  
Jinoh Won ◽  
Fred H. Kulhawy

2015 ◽  
Vol 764-765 ◽  
pp. 1209-1213
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Yu Ting Lin

Cyclic loadings would cause the failure of pile foundation which was leading to many studies in the past. In this study, 6 centrifuge models were conducted in the acceleration field of 80 g. In order to simulate the off-shore wind turbine foundation embedded in soft deposit and subjected to lateral forces such as strong wind and waves. The pile was embedded in the dry or saturated soil deposit, and the different elevation of lateral force was applied to the pile foundation. From the tests, it was found 1% of pile head displacement suggested in the design guide is conservative.


2013 ◽  
Vol 8 (1-2) ◽  
pp. 83-88 ◽  
Author(s):  
SMH Uddin ◽  
MN Islam

Investigation of the static lateral load resistance of pile on layered sandy soil was made by laboratory model test on single pile. The experiment was carried out with variable diameter and variable embedded length of pile on sandy soil. In this study, model pile was single pile which satisfies the Meyerhof’s Relative Stiffness limit of pile for flexible pile. Single pile embedded length, L=0.46m, 0.609m, 0.762m for pile diameter, d=0.013m, 0.019m, 0.026m, respectively. And for surcharge condition embedded length of single pile, L=0.609m and surcharge of pressure, P=3369.55Kg/m3, P=6739.1 Kg/m3 and P=13478.20Kg/m3 for each diameter and for saturated condition of pile diameter, d=0.013m. These experiments were conducted with local sand of Rajshahi region and domar sand; available in Bangladesh. Lateral static loads were applied in the single by a static lateral load set up arrangement. Due to the static lateral load the pile was deflected. The load-displacement response, ultimate resistance of pile has been qualitatively and quantitatively investigated in the experiment. The lateral resistance of pile obtains by experiment and the ultimate lateral load resistances obtained by analytical methods were compared. The load displacement curves are similar and non-linear. Lateral failure at a pile head displacement from 8 to 10, 7 to 9 and 6 to 8mm for single pile of d= 0.013m, 0.019m and 0.026m, respectively. In the case of saturated condition of sand a pile head displacement 15mm for single of d=0.013m. It observed that the failure load was the point at which the curve exhibits a pick or maintains continuous displacement increase with no further increase in lateral resistance. DOI: http://dx.doi.org/10.3329/jsf.v8i1-2.14630 J. Sci. Foundation, 8(1&2): 83-88, June-December 2010


Author(s):  
Bengt Fellenius

On April 4, 2018, 209 days after driving, a static loading test was performed on a 50 m long, strain-gage instrumented, square 275-mm diameter, precast, shaft-bearing (“floating”) pile in Göteborg,Sweden. The soil profile consisted of a 90 m thick, soft, postglacial, marine clay. The groundwater table was at about 1.0 m depth. The undrained shear strength was about 20 kPa at 10 m depth and increased linearly to about 80 kPa at 55m depth. The load-distribution at the peak load correlated to an average effective stress beta-coefficient of 0.19 along the pile or, alternatively, a unit shaft shear resistance of 15 kPa at 10 m depth increasing to about 65 kPa at 50 m depth, indicating an α-coefficient of about 0.80. Prior to the test, geotechnical engineers around the world were invited to predict the load-movement curve to be established in the test—22 predictions from 10 countries were received. The predictions of pile stiffness, and pile head displacement showed considerable scatter, however. Predicted peak loads ranged from 65% to 200% of the actual 1,800-kN peak-load, and 35% to 300% of the load at 22-mm movement.


2020 ◽  
Vol 205 ◽  
pp. 05010
Author(s):  
Maryam Saaly ◽  
Pooneh Maghoul ◽  
Hartmut Holländer

Harvesting geothermal energy through the use of thermo-active pile systems is an eco-friendly technique to provide HVAC energy demand of buildings. Mechanical behaviour of thermo-active piles is impacted by thermal cycles. Moreover, in urban areas, the temperature of the ground is higher than non-constructed areas due to the heat loss through the below-grade enclosure of buildings. This heat dissipation increases the thermal capacity of the soil and affects the mechanical response of the geothermal pile foundation subjected to thermo-mechanical loading. To investigate the effect of buildings heat loss on thermo-active piles, a numerical thermo-mechanical (TM) analysis was carried out on a proposed energy foundation system for an institutional building, the Stanley Pauley Engineering Building (SPEB) in the campus of the University of Manitoba, Winnipeg, Canada. The mechanical response of the geothermal piles to the thermal cycles with and without considering heat leakage through the basement of the SPEB is compared. Results showed that the cooling loads induced a maximum vertical pile head displacement of -1.18 mm. After 5 years operation of the system, the maximum vertical pile head displacement decreased to -1.05 mm for the case in which heat loss through the basement in considered in the models. In addition, the maximum axial load effective along the pile axis was 6% higher for the case that considers heat loss through the basement compared to the case without considering heat leakage through the building’s below-grade envelope.


Author(s):  
Anis Mohamad Ali ◽  
Mohamad J. K. Essa ◽  
Abdulameer Qasim Hassan

This work deals with the dynamic behavior of offshore piles embedded in soft clay, and an attempt is made to estimate the critical embedded pile length. ABAQUS finite element program is used to simulate the problem. The soil was modeled as an elastic state and elastoplastic state and represented by cam-clay model. Three dimensional elements were used to represent the interaction between pile and soil, laboratory tests are used to obtain the real properties of soil and to describe interface. The results obtained are used to develop the elastic equation used by Matlock and Reese to calculate the critical embedded pile length for pile embedded in elastoplastic soil. Also, show that the critical embedded pile length is increased by about (20 % to 40 %) due to changing soil model from elastic to elastoplastic. The pile embedded in an elastoplastic soil is dependent on soil strength, interface properties and pile rigidity. The pile head displacement is increased about 90 % while the bending moment is deceased by 10 % at pile head.


2013 ◽  
Vol 29 (4) ◽  
pp. 685-693 ◽  
Author(s):  
C. J. Chien ◽  
S. S. Lin ◽  
C. C. Yang ◽  
J. C. Liao

ABSTRACTThis paper reports the results of a series of full-scale drilled shaft load tests subjected to combined axial and lateral loading and lateral loading only. The tested shafts, 1.4m in diameter, were embedded 37m in sandy silt. All tested shafts were installed using reverse circulation method. The test results indicated, given the same lateral loading, 63% of pile head displacement resulted from combined load corresponded with the case of lateral loading only. The test results were compared to the numerical results of the software LPILE as well as the analytical solutions proposed by the senior author and his co-workers. The analytical results of the pile bending moments along shaft showed better results than that of LPILE.


Author(s):  
Oh Sung Kwon ◽  
Yongkyu Choi ◽  
Ohkyun Kwon ◽  
Myoung Mo Kim

For the past decade, the Osterberg testing method (O-cell test) has been proved advantageous over the conventional pile load testing method in many aspects. However, because the O-cell test uses a loading mechanism entirely different from that of the conventional pile loading testing method, many investigators and practicing engineers have been concerned that the O-cell test would give inaccurate results, especially about the pile head settlement behavior. Therefore, a bidirectional load test using the Osterberg method and the conventional top-down load test were executed on 1.5-m diameter cast-in-place concrete piles at the same time and site. Strain gauges were placed on the piles. The two tests gave similar load transfer curves at various depth of piles. However, the top-down equivalent curve constructed from the bidirectional load test results predicted the pile head settlement under the pile design load to be approximately one half of that predicted by the conventional top-down load test. To improve the prediction accuracy of the top-down equivalent curve, a simple method that accounts for the pile compression was proposed. It was also shown that the strain gauge measurement data from the bidirectional load test could reproduce almost the same top-down curve.


Sign in / Sign up

Export Citation Format

Share Document