Basic Field-Solver Techniques for RC Extraction

Author(s):  
Wenjian Yu ◽  
Xiren Wang
Keyword(s):  
2017 ◽  
Vol 15 (1) ◽  
pp. 58-78
Author(s):  
Pimkamol Maleetipwan-Mattsson ◽  
Thorbjörn Laike ◽  
Maria Johansson

Purpose The purpose of this paper is to differentiate human responses to different light switch designs to determine the effects of these common interfaces on user perceptions and use of electric lighting in public buildings. Design/methodology/approach Empirical studies were conducted to assess and examine user perceptions with regard to design characteristics of light switches, and occupants’ use of electric lighting was examined through field observations made in a public toilet. Findings The results point to the possibility of identifying characteristics of light switches that attract user attention and thereby encourage energy-saving behaviour in public buildings. A light switch perceived as simple but oversized affected occupants to turn off the lights more frequently when leaving the space under study as compared to switches of normal size. Research limitations/implications Information on user perceptions of light switches may be limited by the assessments being carried out only in controlled environments. Assessing user perceptions in field observations is thus desirable, as it will provide more information on the perceptions in actual settings. Practical implications Effective design of user interfaces could provide a means of lowering energy use from electric lighting by affecting the behaviour of users. Using user perceptions to define critical design characteristics could contribute to design improvements in the interfaces with respect to users’ viewpoints. Originality/value This paper contributes to the subject with a basic, field-based approach to formulating an understanding of how design via user perceptions may encourage energy-saving behaviour.


2007 ◽  
Vol 20 (19) ◽  
pp. 4982-4994 ◽  
Author(s):  
Naoki Sato ◽  
Masaaki Takahashi

Abstract The authors identified an upper-level pressure anomaly pattern corresponding to the interannual variability of the Okhotsk high in midsummer (late July and early August) as a predominant anomaly pattern in the Northern Hemisphere, by using objectively analyzed data. According to the results of empirical orthogonal function (EOF) analyses and composite analyses, a positive pressure anomaly appeared near the tropopause over eastern Siberia in years with strong Okhotsk highs. Examination of the heat budget in the lower troposphere revealed that a negative surface temperature anomaly observed in northern Japan was brought by the advection of the climatological temperature gradient from the anomalous wind associated with the upper-level anticyclonic anomaly. It was also demonstrated that the anomaly field over Siberia does not accompany predominant vorticity forcing or Rossby wave propagation from the west with a specific phase. However, positive kinetic energy conversion from the climatological basic field to the anomaly field is estimated. The energy conversion contributes to maintaining the anomaly pattern. By the numerical experiments using a linear barotropic model, it is suggested that the upper-level anomaly pattern related to the anomalous Okhotsk high appears through the interaction with the climatological basic field, even though the external forcings are homogeneously distributed.


2021 ◽  
pp. 0734242X2110381
Author(s):  
Dotanhan Yeo ◽  
Kouassi Dongo ◽  
Eliachie Larissa Eméline Angoua ◽  
Adeline Mertenat ◽  
Phillipp Lüssenhop ◽  
...  

In recent years, decentralized composting appeared as one of the most appropriate treatment options for organic waste valorization in low- and middle-income countries. In Cote d’Ivoire, a pilot project has proved the feasibility of organic municipal solid waste composting for the city of Tiassalé. However, numerous issues still need to be addressed for the establishment of a sustainable decentralized composting system in this city. One of the key issues is site selection. Until now, there is no clear model for such plant site selection. In this study, multi-criteria decision analysis (MCDA) and geographical information system (GIS) approaches were combined to develop an appropriate model for selecting decentralized composting sites in the city of Tiassalé. The methodology used involved two different and complementary phases. First, MCDA and GIS techniques were used to identify the most suitable site areas. Seven criteria clustered in three main factors (environmental, social and economic), and five constraints were considered in the analysis process. Second, five sites were selected within the most suitable areas after a basic field visit and ranked using the Analytic Hierarchy Process. The results showed that the most suitable spaces for decentralized composting plant siting represent only 2.6% of the study area. The investigation yielded on the selection of the two best options for decentralized composting plant siting for the city of Tiassalé. This study proved that the combination of MCDA and GIS is a practical and efficient method to identify suitable sites for decentralized composting plants.


Zootaxa ◽  
2018 ◽  
Vol 4446 (4) ◽  
pp. 442
Author(s):  
ISHAN AGARWAL ◽  
AKSHAY KHANDEKAR ◽  
AARON M. BAUER

We describe a new species of the gekkonid genus Cyrtodactylus based on a series of six specimens from the Chamba Valley in the Western Himalayas, Himachal Pradesh state, India. Cyrtodactylus chamba sp. nov. is a member of the subgenus Siwaligekko and can be diagnosed from congeners in the Western Himalayas by a combination of its small size (snout to vent length up to 63 mm), a continuous series of five precloacal pores on males, 13–15 rows of dorsal tubercles, 33–43 scales across the belly, no regular series of enlarged subcaudals, and a dorsal colour pattern of 5–7 irregular, broad, dark bands with much narrower, light interspaces. The new species is 14% divergent in ND2 sequence from the most similar sampled congener, Cyrtodactylus (Siwaligekko) himalayanus from Jammu and Kashmir, and is 0.5–1.1% divergent in nuclear sequence data from sampled Siwaligekko species. Many more undiscovered Cyrtodactylus species probably exist across the Himalayas at elevations below ~2000 m; basic field surveys for reptiles and other poorly known groups and examination of existing material should be a priority if we are to appreciate the true diversity of this spectacular mountainous landscape. 


2006 ◽  
Vol 19 (8) ◽  
pp. 1531-1544 ◽  
Author(s):  
Naoki Sato ◽  
Masaaki Takahashi

Abstract Statistical features of quasi-stationary planetary waves were examined on the subtropical jet in the midsummer Northern Hemisphere by using objectively analyzed data and satellite data. As a result, a quasi-stationary wave train that is highly correlated with the midsummer climate over Japan was identified. A clear phase dependency of the appearance of waves was also confirmed. An analysis of temporal evolution and wave activity flux revealed that the eastward propagation of the wave packet starts in the Middle East, passes over East Asia, and reaches North America. The anomaly pattern is strengthened through kinetic energy conversion near the entrance of the Asian jet over the Middle East. The interaction between the anomaly pattern and the basic field contributes to the appearance of the anomalous wavelike pattern. Although the wave train is correlated with the anomaly of convective activity over the western North Pacific and the Indian Ocean, it is implied that internal dynamics are important in determining the statistical features of the appearance of anomalous quasi-stationary waves on the subtropical jet.


Author(s):  
Riva Tomasowa

Composition and CAAD are closely related to structure logic. Composition is built by numbers which are also the language of CAAD frame algorithm. This bond provides the opportunity and privilege to help map the composition of CAAD into concrete manifestation. This paper examines both the composition of the basicconcepts introduced to students and the application to the computerized design. Awareness of students as designers is reviewed towards the tools and their potential availability in the case of form composition from the basic field. The specialty of this tool is able to redefine the creativity path to be logical and measurable. This opportunity provides acceleration towards form searching and balanced expression according to the designer’s interpretation. The user’s ability to optimize the modeling tool helps start the formation of the basic ideas. Starting from digital sketch, it gives room for the evolution and development of a vast alternative design.


2000 ◽  
Vol 15 (15) ◽  
pp. 2225-2235 ◽  
Author(s):  
H. FORT ◽  
E. C. MARINO

A full quantum description of global vortex strings is presented in the framework of a pure Higgs system with a broken global U(1) symmetry in 3+1D. An explicit expression for the string creation operator is obtained, both in terms of the Higgs field and in the dual formulation where a Kalb–Ramond antisymmetric tensor gauge field is employed as the basic field. The quantum string correlation function is evaluated and from this, the string energy density is obtained. Potential application in cosmology (cosmic strings) and condensed matter (vortices in superfluids) are discussed.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Abolfazl Hasani Baferani ◽  
Abdolreza Ohadi

In this paper, a new analytical solution for Biot's equations is presented based on potential functions method. The primary coupled Biot's equations have been considered based on fluid and solid displacements in three-dimensional (3D) space. By defining some potential functions, the governing equations have been improved to a simpler form. Then the coupled Biot's equations have been replaced with four-decoupled equations, by doing some mathematical manipulations. For a case study, it is assumed that the incident wave is in xy-plane and for specific boundary conditions; the partial differential equations are converted to ordinary differential equations and solved analytically. Then two foams with different properties have been considered, and acoustical properties of these foams due to the new developed method have been compared with the corresponding results presented by transfer-matrix method. Good agreement between results verifies the new presented solution. Based on the potential function method, not only the acoustical properties of porous materials are calculated, but also the analytical values of all basic field variables, such as pressure, fluid, and solid displacements, are obtained for all points in the porous media. Furthermore, fundamental features, such as damped and undamped natural frequencies, and damping coefficient of porous materials are calculated by considering presented results. The obtained results show that maximum values of field variables, such as pressure, fluid, and solid displacements, happen at the damped natural frequencies of the porous media, as expected. By increasing material thickness, the effect of damping of porous material on damped natural frequency decreases. Damping decreases the first natural frequency of the foam up to 8.5%.


Sign in / Sign up

Export Citation Format

Share Document