Comparison of Different 3D Edge Detection Methods to Define Landmarks for Point-Based Warping in Autoradiographic Brain Imaging

Author(s):  
Rainer Pielot ◽  
Michael Scholz ◽  
Klaus Obermayer ◽  
Eckart D. Gundelfinger ◽  
Andreas Hess
2016 ◽  
Vol 3 (2) ◽  
pp. 26
Author(s):  
HEMALATHA R. ◽  
SANTHIYAKUMARI N. ◽  
MADHESWARAN M. ◽  
SURESH S. ◽  
◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1665
Author(s):  
Jakub Suder ◽  
Kacper Podbucki ◽  
Tomasz Marciniak ◽  
Adam Dąbrowski

The aim of the paper was to analyze effective solutions for accurate lane detection on the roads. We focused on effective detection of airport runways and taxiways in order to drive a light-measurement trailer correctly. Three techniques for video-based line extracting were used for specific detection of environment conditions: (i) line detection using edge detection, Scharr mask and Hough transform, (ii) finding the optimal path using the hyperbola fitting line detection algorithm based on edge detection and (iii) detection of horizontal markings using image segmentation in the HSV color space. The developed solutions were tuned and tested with the use of embedded devices such as Raspberry Pi 4B or NVIDIA Jetson Nano.


2021 ◽  
Vol 8 (3) ◽  
pp. 1-8
Author(s):  
Cuong Phan Viet ◽  
Thao Ho Thi ◽  
Anh Le Tuan ◽  
Ha Nguyen Hong ◽  
Thanh Ha Quang

Handling and improving the quality of medical images with the help of computer software is one of the important stages in the diagnosis and treatment. In this article, we focus on describing the new morphological algorithms by ITK (Insight Segmentation and Registration Toolkit). These morphological operators eliminate noise, detect good edges, and overcome the drawback of traditional edge detection methods.


Author(s):  
Shouvik Chakraborty ◽  
Mousomi Roy ◽  
Sirshendu Hore

Image segmentation is one of the fundamental problems in image processing. In digital image processing, there are many image segmentation techniques. One of the most important techniques is Edge detection techniques for natural image segmentation. Edge is a one of the basic feature of an image. Edge detection can be used as a fundamental tool for image segmentation. Edge detection methods transform original images into edge images benefits from the changes of grey tones in the image. The image edges include a good number of rich information that is very significant for obtaining the image characteristic by object recognition and analyzing the image. In a gray scale image, the edge is a local feature that, within a neighborhood, separates two regions, in each of which the gray level is more or less uniform with different values on the two sides of the edge. In this paper, the main objective is to study the theory of edge detection for image segmentation using various computing approaches.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6219
Author(s):  
Jhon Jairo Vega Díaz ◽  
Michiel Vlaminck ◽  
Dionysios Lefkaditis ◽  
Sergio Alejandro Orjuela Vargas ◽  
Hiep Luong

The installation of solar plants everywhere in the world increases year by year. Automated diagnostic methods are needed to inspect the solar plants and to identify anomalies within these photovoltaic panels. The inspection is usually carried out by unmanned aerial vehicles (UAVs) using thermal imaging sensors. The first step in the whole process is to detect the solar panels in those images. However, standard image processing techniques fail in case of low-contrast images or images with complex backgrounds. Moreover, the shades of power lines or structures similar to solar panels impede the automated detection process. In this research, two self-developed methods are compared for the detection of panels in this context, one based on classical techniques and another one based on deep learning, both with a common post-processing step. The first method is based on edge detection and classification, in contrast to the second method is based on training a region based convolutional neural networks to identify a panel. The first method corrects for the low contrast of the thermal image using several preprocessing techniques. Subsequently, edge detection, segmentation and segment classification are applied. The latter is done using a support vector machine trained with an optimized texture descriptor vector. The second method is based on deep learning trained with images that have been subjected to three different pre-processing operations. The postprocessing use the detected panels to infer the location of panels that were not detected. This step selects contours from detected panels based on the panel area and the angle of rotation. Then new panels are determined by the extrapolation of these contours. The panels in 100 random images taken from eleven UAV flights over three solar plants are labeled and used to evaluate the detection methods. The metrics for the new method based on classical techniques reaches a precision of 0.997, a recall of 0.970 and a F1 score of 0.983. The metrics for the method of deep learning reaches a precision of 0.996, a recall of 0.981 and a F1 score of 0.989. The two panel detection methods are highly effective in the presence of complex backgrounds.


Sign in / Sign up

Export Citation Format

Share Document