Immunization Against Alzheimer’s Disease and Other Neurodegenerative Disorders

2003 ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Priyanka Joshi ◽  
Michele Perni ◽  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Sam Casford ◽  
...  

AbstractAge-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer’s disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.


Neuroreport ◽  
2004 ◽  
Vol 15 (6) ◽  
pp. 955-959 ◽  
Author(s):  
Annika Rickle ◽  
Nenad Bogdanovic ◽  
Inga Volkman ◽  
Bengt Winblad ◽  
Rivka Ravid ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Nazanin Mirzaei ◽  
Nicola Davis ◽  
Tsz Wing Chau ◽  
Magdalena Sastre

: Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer’s disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from “normal” healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Anil Kumar S ◽  
Saif SA ◽  
Oothuman P ◽  
Mustafa MIA

Introduction: Reduced cerebral blood fl ow is associated with neurodegenerative disorders and dementia, in particular. Experimental evidence has demonstrated the initiating role of chronic cerebral hypoperfusion in neuronal damage to the hippocampus, the cerebral cortex, the white matter areas and the visual system. Permanent, bilateral occlusion of the common carotid arteries of rats (two vessel occlusion - 2VO) has been introduced for the reproduction of chronic cerebral hypoperfusion as it occurs in Alzheimer’s disease and human aging. Increased generation of free radicals through lipid peroxidation can damage neuronal cell membrane. Markers of lipid peroxidation have been found to be elevated in brain tissues and body fl uids in neurodegenerative diseases, including Alzheimer’s disease, Parkinson disease and amyotrophic lateral sclerosis. Materials and Methods: Malondialdehyde (MDA), final product of lipid peroxidation, was estimated by thiobarbituric acid-reactive substances (TBARS) assay kit at eight weeks after induction of 2VO in the rats and control group. Results: Our study revealed a highly signifi cant (p<0.001) increase in the mean MDA concentration (12.296 ± 1.113 μM) in 2VO rats as compared to the control group (5.286 ± 0.363 μM) rats. Conclusion: Therapeutic strategies to modulate lipid peroxidation early throughout the course of the disease may be promising in slowing or possibly preventing neurodegenerative disorders.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jong-Sung Park ◽  
Tae-In Kam ◽  
Saebom Lee ◽  
Hyejin Park ◽  
Yumin Oh ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common cause of age-related dementia. Increasing evidence suggests that neuroinflammation mediated by microglia and astrocytes contributes to disease progression and severity in AD and other neurodegenerative disorders. During AD progression, resident microglia undergo proinflammatory activation, resulting in an increased capacity to convert resting astrocytes to reactive astrocytes. Therefore, microglia are a major therapeutic target for AD and blocking microglia-astrocyte activation could limit neurodegeneration in AD. Here we report that NLY01, an engineered exedin-4, glucagon-like peptide-1 receptor (GLP-1R) agonist, selectively blocks β-amyloid (Aβ)-induced activation of microglia through GLP-1R activation and inhibits the formation of reactive astrocytes as well as preserves neurons in AD models. In two transgenic AD mouse models (5xFAD and 3xTg-AD), repeated subcutaneous administration of NLY01 blocked microglia-mediated reactive astrocyte conversion and preserved neuronal viability, resulting in improved spatial learning and memory. Our study indicates that the GLP-1 pathway plays a critical role in microglia-reactive astrocyte associated neuroinflammation in AD and the effects of NLY01 are primarily mediated through a direct action on Aβ-induced GLP-1R+ microglia, contributing to the inhibition of astrocyte reactivity. These results show that targeting upregulated GLP-1R in microglia is a viable therapy for AD and other neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document