Real-Time PCR Monitoring of Estuarine Water Samples for Pfiesteria piscicida: A Dinoflagellate Associated with Fish Kills and Human Illness

2001 ◽  
pp. 391-398
Author(s):  
Holly Bowers ◽  
Torstein Tengs ◽  
Mark Herrmann ◽  
David Oldach
2010 ◽  
Vol 76 (16) ◽  
pp. 5520-5525 ◽  
Author(s):  
Duochun Wang ◽  
Xuebin Xu ◽  
Xiaoling Deng ◽  
Changyi Chen ◽  
Baisheng Li ◽  
...  

ABSTRACT Environmental waters are an important reservoir for Vibrio cholerae, and effective surveillance of the pathogen can help to warn of and prevent infection with this potentially fatal pathogen. An immunofluorescent-aggregation (IFAG) assay to detect V. cholerae O1 and O139 was established and evaluated with estuarine water samples. The practical application of this assay was compared with the conventional culture method and real-time PCR. The IFAG method had a sensitivity of 103 CFU/ml for detection of V. cholerae O1 and O139 strains in a suspension containing 10 different species of enterobacterial strains (total, 105 CFU/ml). Ten fluorescent bacterial aggregate colonies were randomly picked and tested positive in serum agglutination tests for the V. cholerae O1 and O139 strains, showing a high specificity. The enrichment broths of 146 samples of estuarine water were tested, and the percentage positive by the IFAG assay was 19.9% (29/146), which was significantly higher than that of the conventional culture method (10.3%, 15/146; P < 0.01) but lower than that of real-time PCR (29.5%, 43/146; P < 0.01). The coincidence rates of real-time PCR and IFAG detection were decreased with the reduction of the V. cholerae concentration. The IFAG method, with a high specificity and a relatively high sensitivity, may be used for detection and isolation of V. cholerae in environmental water samples.


2000 ◽  
Vol 66 (11) ◽  
pp. 4641-4648 ◽  
Author(s):  
Holly A. Bowers ◽  
Torstein Tengs ◽  
Howard B. Glasgow ◽  
JoAnn M. Burkholder ◽  
Parke A. Rublee ◽  
...  

ABSTRACT Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far,Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteriaspecies, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S140-S140
Author(s):  
A Kalam

Abstract Introduction/Objective Diarrhea is a major source of morbidity and mortality in low-income and middle-income countries. In underdeveloped countries, diseases caused by viruses identified in environmental samples cause major health problems. Little knowledge about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. Adenovirus which causes watery diarrhea, particular has been recognized as important causal pathogen. Adenovirus remains a global threat to public health and an indicator of inequity and lack of social development. Tap water samples from coastal sites in Karachi between 2019 and 2020 over a period of 11 months. The total of 40 tap water sample was examined for infectious Adenovirus by a real time polymerase chain reaction (PCR) amplification. Methods/Case Report This Pilot study is conducted on tap water samples from Karachi Pakistan, n=40 are processed. Extraction of nucleic acid from all filtered water samples collected with Sterivex filter units by using Qiagen DNeasy Power Water Sterivex Kit. As per the manufacturer’s instruction. Phocine herpesvirus(PhHV) is added as an external positive control to monitor the efficiency of nucleic acid extraction and amplification. TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) is being used in probe based real time PCR assay,the below 35 Ct value is considered as a positive sample. Results (if a Case Study enter NA) Results showed the total of 37.7% of the sources were positive for adenovirus.The level of viral contamination was moderate to high. Conclusion The results has been showed that no seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Further the Real time PCR assay increases the sensitivity and provides the high resolution of pathogen detection.


Author(s):  
Eun-Sook Lee ◽  
So-Yang Cha ◽  
Jong-Soon Jung

Abstract DNA extraction methods were evaluated to reduce PCR inhibitors and quantify Helicobacter pylori directly from water samples using real-time PCR. Three nucleic acid extraction methods were evaluated for different types of water samples. While the QIAamp DNA mini kit for tissue was suitable for DNA extraction from treated water, the QIAamp DNA stool mini kit was still efficient in analyzing samples from river water after heavy rain and with high concentration of PCR inhibitors. The FastDNA SPIN Kit for Soil could extract DNA effectively from microbes in river and stream waters without heavy rain. Immunomagnetic separation (IMS) was used prior to DNA extraction and was a useful tool for reducing PCR inhibitors in influent and stream samples. H. pylori in various waters could be quantified directly by real-time PCR while minimizing the effect of PCR inhibitors by an appropriate method through the evaluation of DNA extraction methods considering the characteristics of the matrix water. The findings of the present study suggest that the types or characteristics of water sample by source and precipitation are an important factor in detecting H. pylori and they can be applied when detecting and monitoring of other pathogens in water.


2012 ◽  
Vol 95 (6) ◽  
pp. 1652-1655 ◽  
Author(s):  
Rakesh Kumar ◽  
K V Lalitha

Abstract A non-radio-labeled probe-based detection method was developed for rapid enumeration of Salmonella in seafood and water samples. A Salmonella-specific invA gene probe was developed using a digoxigenin-based non-radio labeling assay, which was evaluated with naturally contaminated seafood and water samples. The probe-based technique was further compared with the quantitative PCR assay. The method was specific for detection of different Salmonella serovars without any nonspecific hybridization with other Salmonella-related Enterobacteriaceae. The optimum labeling efficiency was determined for the labeled probe, and 10 pg/μL probe concentration was observed to be most efficient for detection of Salmonella colonies on nylon membrane. Quantification of Salmonella in naturally contaminated seafood and water samples (n = 21) was in the range 10–102 CFU/mL. The assay successfully quantified Salmonella in spiked seafood and water samples in the presence of background flora, and the entire assay was completed within 48 h. The probe-based assay was further evaluated with real-time PCR, and results showed that the assay was comparable to real-time PCR assay. Thus, this probe-based assay can be a rapid, useful, and alternative technique for quantitative detection of Salmonella in food, feed, and water samples.


2011 ◽  
Vol 11 (4) ◽  
pp. 418-425 ◽  
Author(s):  
S. W. Lam ◽  
H. B. Zhang ◽  
L. Yu ◽  
C. H. Woo ◽  
K. N. Tiew ◽  
...  

In this study, a quantitative species-specific polymerase chain reaction (PCR) method to rapidly detect E. histolytica in water is developed. First, the specificity of E. histolytica PCR detection was verified by using species-specific primers of 16S-like rRNA genes to clearly differentiate it from the closely related amoebae species E. dispar and E. moshkovskii. The sensitivity of this method was subsequently determined using purified E. histolytica genomic DNA and culture cells as PCR reaction templates. Results indicated that conventional PCR visualized on 1% agarose gel was able to detect as low as 0.02 pg genomic DNA and 5 cells, while real-time PCR could detect 0.01 pg genomic DNA and 2 cells of E. histolytica. The protocols for E. histolytica PCR detection in real water samples were then optimized by spiking E. histolytica cells into tap water and reservoir raw water samples. A two-round centrifugation treatment to concentrate amoeba cells directly as a PCR template was the most effective way to detect E. histolytica in spiked tap water samples, while DNA extraction after concentrating amoeba cells was required for spiked reservoir raw water samples. The detection limit of 50 E. histolytica cells in 100 ml tap water was achieved in 2 h from sample collection to real-time PCR data readout. With these established protocols, 78 tap water samples, 11 reservoir raw water samples and 4 feed water samples from Singapore water supply systems were analyzed by both conventional PCR and real-time PCR methods. No E. histolytica cell was detected in tested samples.


2010 ◽  
Vol 56 (9) ◽  
pp. 761-770 ◽  
Author(s):  
Hua Yang ◽  
Oleksandr A. Byelashov ◽  
Ifigenia Geornaras ◽  
Lawrence D. Goodridge ◽  
Kendra K. Nightingale ◽  
...  

This study examined the presence of antibiotic-resistant commensal bacteria among cattle operations representing areas heavily affected by agriculture, city locations representing areas affected by urban activities and indirectly affected by agriculture, and a national park representing an area not affected by agriculture. A total of 288 soil, fecal floor, and water samples were collected from cattle operations, from the city of Fort Collins, and from Rocky Mountain National Park (RMNP) in Colorado. In addition, a total of 42 new and unused feed, unused bedding, compost, and manure samples were obtained from the cattle operations. Total, tetracycline-resistant, and ceftiofur-resistant bacterial populations were enumerated by both standard culture plating and real-time PCR methods. Only wastewater samples from the cattle operations demonstrated both higher tetracycline-resistant bacterial counts (enumerated by the culture plating method) and tetracycline resistance gene copies (quantified by real-time PCR) compared to water samples collected from non-farm environments. The ceftiofur resistance gene, blaCMY-2, was not detectable in any of the samples, while the tetracycline resistance genes examined in this study, tet(B), tet(C), tet(W), and tet(O), were detected in all types of tested samples, except soil samples from RMNP. Tetracycline resistance gene pools quantified from the tet(O) and tet(W) genes were bigger than those from the tet(B) and tet(C) genes in fecal and water samples. Although only limited resistance genes, instead of a full set, were selected for real-time PCR quantification in this study, our results point to the need for further studies to determine natural and urban impacts on antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document