Attenuation of Semliki Forest (SF) Virus in Continuously Cultured Aedes aegypti Mosquito Cells (Peleg) as a Step in Production of Vaccines

Author(s):  
J. Peleg
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rommel J. Gestuveo ◽  
Jamie Royle ◽  
Claire L. Donald ◽  
Douglas J. Lamont ◽  
Edward C. Hutchinson ◽  
...  

AbstractThe escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.


2019 ◽  
Vol 93 (18) ◽  
Author(s):  
Artem Baidaliuk ◽  
Elliott F. Miot ◽  
Sebastian Lequime ◽  
Isabelle Moltini-Conclois ◽  
Fanny Delaigue ◽  
...  

ABSTRACT Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo. For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo. Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses. IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009110
Author(s):  
Laura I. Levi ◽  
Veronica V. Rezelj ◽  
Annabelle Henrion-Lacritick ◽  
Diana Erazo ◽  
J Boussier ◽  
...  

Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.


1972 ◽  
Vol 4 (1) ◽  
pp. 55-61 ◽  
Author(s):  
J. Peleg ◽  
A. Shahar
Keyword(s):  

2019 ◽  
Author(s):  
Doug E. Brackney ◽  
Maria A. Correa

AbstractMacroautophagy is an evolutionarily conserved cellular process critical for maintaining cellular homeostasis. It can additionally function as an innate immune response to viral infection as has been demonstrated for a number of arthropod-borne (arbo-) viruses. Arboviruses are maintained in a transmission cycle between vertebrate hosts and invertebrate vectors yet the majority of studies assessing autophagy-arbovirus interactions have been limited to the mammalian host. Therefore we evaluated the role of autophagy during arbovirus infection of the invertebrate vector using the tractable Aag2 Aedes aegypti mosquito cell culture system. Our data demonstrates that autophagy is significantly induced in mosquito cells upon infection with two flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), as well as an unrelated mosquito-borne virus, chikungunya virus (CHIKV; Togaviridae). While assessing the role of autophagy during arbovirus infection, we observed a somewhat paradoxical outcome. Both induction and suppression of autophagy via torin 1 and spautin-1, respectively, resulted in increased viral titers for all three viruses, yet suppression of autophagy-related genes had no effect. Interestingly, chemical modulators of autophagy had either no effect or opposite effects in another widely used mosquito cell line, C6/36 Aedes albopictus cells. Together, our data reveals a limited role for autophagy during arbovirus infection of mosquito cells. Further, our findings suggest that commonly used chemical modulators of autophagy alter mosquito cells in such a way as to promote viral replication; however, it is unclear if this occurs directly through autophagic manipulation or other means.Author SummaryArthropod-borne (arbo) viruses, specifically those transmitted by Aedes aegypti mosquitoes, cause significant morbidity and mortality and pose a continued public health threat worldwide. Many of these viruses lack vaccines or therapeutics and current mosquito control strategies are underperforming. For these reasons, identifying vulnerabilities within the transmission cycle that can be targeted will be critical to the development of novel control interventions. Autophagy is a highly conserved cellular pathway and previous studies manipulating this pathway have shown promise in minimizing viral infections in mammalian hosts. In this study we examined arbovirus-autophagy interactions within vector mosquitoes. The goal was to elucidate the role of autophagy during infection of mosquitoes in hopes of identifying critical interactions that can be targeted by novel approaches to block infection of and transmission by vector mosquitoes.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 748
Author(s):  
Margus Varjak ◽  
Rommel J. Gestuveo ◽  
Richard Burchmore ◽  
Esther Schnettler ◽  
Alain Kohl

Mosquitoes, such as Aedes aegypti, can transmit arboviruses to humans. The exogenous short interfering RNA (exo-siRNA) pathway plays a major antiviral role in controlling virus infection in mosquito cells. The Dicer 2 (Dcr2) nuclease is a key effector protein in this pathway, which cleaves viral double-stranded RNA into virus-derived siRNAs that are further loaded onto an effector called Argonaute 2 (Ago2), which as part of the multiprotein RNA-induced silencing complex (RISC) targets and cleaves viral RNA. In order to better understand the effector protein Dcr2, proteomics experiments were conducted to identify interacting cellular partners. We identified several known interacting partners including Ago2, as well as two novel and previously uncharacterized Ae. aegypti proteins. The role of these two proteins was further investigated, and their interactions with Dcr2 verified by co-immunoprecipitation. Interestingly, despite their ability to interact with Ago2 and Piwi4, neither of these proteins was found to affect exo-siRNA silencing in a reporter assay. However, one of these proteins, Q0IFK9, subsequently called aBravo (aedine broadly active antiviral protein), was found to mediate antiviral activity against positive strand RNA arboviruses. Intriguingly the presence of Dcr2 was not necessary for this effect, suggesting that this interacting antiviral effector may act as part of protein complexes with potentially separate antiviral activities.


2017 ◽  
Author(s):  
Umberto Palatini ◽  
Pascal Miesen ◽  
Rebeca Carballar-Lejarazu ◽  
Lino Ometto ◽  
Ettore Rizzo ◽  
...  

ABSTRACTBackgroundArthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Arboviruses form episomal viral DNA fragments upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes.ResultsWe used a bioinformatic approach to analyze the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presently available 22 mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, but are ∼10-fold less abundant in all other mosquitoes analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs.ConclusionsDifferences in number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exits. Viral integrations are abundant in Ae. aegypti and Ae. albopictus, and represent a thus far unappreciated component of their genomes. Additionally, the genome locations of viral integrations and their production of piRNAs indicate a functional link between viral integrations and the piRNA pathway. These results greatly expand the breadth and complexity of small RNA-mediated regulation and suggest a role for viral integrations in antiviral defense in these two mosquito species.


Sign in / Sign up

Export Citation Format

Share Document