scholarly journals Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes

2021 ◽  
Vol 17 (2) ◽  
pp. e1009110
Author(s):  
Laura I. Levi ◽  
Veronica V. Rezelj ◽  
Annabelle Henrion-Lacritick ◽  
Diana Erazo ◽  
J Boussier ◽  
...  

Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.

2020 ◽  
Vol 117 (4) ◽  
pp. 2122-2132 ◽  
Author(s):  
Evelyn M. Covés-Datson ◽  
Steven R. King ◽  
Maureen Legendre ◽  
Auroni Gupta ◽  
Susana M. Chan ◽  
...  

There is a strong need for a new broad-spectrum antiinfluenza therapeutic, as vaccination and existing treatments are only moderately effective. We previously engineered a lectin, H84T banana lectin (H84T), to retain broad-spectrum activity against multiple influenza strains, including pandemic and avian, while largely eliminating the potentially harmful mitogenicity of the parent compound. The amino acid mutation at position 84 from histidine to threonine minimizes the mitogenicity of the wild-type lectin while maintaining antiinfluenza activity in vitro. We now report that in a lethal mouse model H84T is indeed nonmitogenic, and both early and delayed therapeutic administration of H84T intraperitoneally are highly protective, as is H84T administered subcutaneously. Mechanistically, attachment, which we anticipated to be inhibited by H84T, was only somewhat decreased by the lectin. Instead, H84T is internalized into the late endosomal/lysosomal compartment and inhibits virus–endosome fusion. These studies reveal that H84T is efficacious against influenza virus in vivo, and that the loss of mitogenicity seen previously in tissue culture is also seen in vivo, underscoring the potential utility of H84T as a broad-spectrum antiinfluenza agent.


2019 ◽  
Vol 93 (18) ◽  
Author(s):  
Artem Baidaliuk ◽  
Elliott F. Miot ◽  
Sebastian Lequime ◽  
Isabelle Moltini-Conclois ◽  
Fanny Delaigue ◽  
...  

ABSTRACT Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo. For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo. Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses. IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


2020 ◽  
Vol 11 (12) ◽  
pp. 1379-1385
Author(s):  
R. Kirk ◽  
A. Ratcliffe ◽  
G. Noonan ◽  
M. Uosis-Martin ◽  
D. Lyth ◽  
...  

We disclose the discovery of REDX07965, a novel tricyclic topoisomerase inhibitor (NTTI) which has broad spectrum activity, favourable in vitro pharmacokinetic properties and selectivity versus human topoisomerase II.


2014 ◽  
Vol 8 (07) ◽  
pp. 876-884 ◽  
Author(s):  
Diana Carolina Quintero-Gil ◽  
Marta Ospina ◽  
Jorge Emilio Osorio-Benitez ◽  
Marlen Martinez-Gutierrez

Introduction: Different dengue virus (DENV) serotypes have been associated with greater epidemic potential. In turn, the increased frequency in cases of severe forms of dengue has been associated with the cocirculation of several serotypes. Because Colombia is a country with an endemic presence of all four DENV serotypes, the aim of this study was to evaluate the in vivo and in vitro replication of the DENV-2 and DENV-3 strains under individual infection and coinfection conditions. Methodology: C6/36HT cells were infected with the two strains individually or simultaneously (coinfection). Replication capacity was evaluated by RT-qPCR, and the effects on cell viability were assessed with an MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Additionally, Aedes aegypti mosquitoes were artificially fed the two strains of each serotype individually or simultaneously. The viral genomes were quantified by RT-qPCR and the survival of the infected mosquitoes was compared to that of uninfected controls. Results: In single infections, three strains significantly affected C6/36HT cell viability, but no significant differences were found in the replication capacities of the strains of the same serotype. In the in vivo infections, mosquito survival was not affected, and no significant differences in replication between strains of the same serotype were found. Finally, in coinfections, serotype 2 replicated with a thousandfold greater efficiency than serotype 3 did both in vitro and in vivo. Conclusions: Due to the cocirculation of serotypes in endemic regions, further studies of coinfections in a natural environment would further an understanding of the transmission dynamics that affect DENV infection epidemiology.


2020 ◽  
Vol 65 (1) ◽  
pp. e01527-20
Author(s):  
Karen Marie Thyssen Astvad ◽  
Karin Meinike Jørgensen ◽  
Rasmus Krøger Hare ◽  
Raluca Datcu ◽  
Maiken Cavling Arendrup

ABSTRACTOlorofim is a novel antifungal drug in phase 2 trials. It has shown promising in vitro activity against various molds, except for Mucorales. Initially, we observed a broad range of EUCAST MICs for Aspergillus fumigatus. Here, we explored the MIC variability in more detail and prospectively investigated the susceptibility of contemporary clinical mold isolates, as population data are needed for future epidemiological cutoff (ECOFF) settings. Fifteen A. fumigatus isolates previously found with low/medium/high MICs (≤0.002 to 0.25 mg/liter) were tested repeatedly and EUCAST MICs read in a blinded fashion by three observers. pyrE, encoding the olorofim target enzyme dihydroorotate dehydrogenase (DHODH), was sequenced. A total of 1,423 mold isolates (10 Aspergillus species complexes [including 1,032 A. fumigatus isolates] and 105 other mold/dermatophyte isolates) were examined. Olorofim susceptibility (modal MIC, MIC50, MIC90, and wild-type upper limits [WT-ULs] [species complexes with ≥15 isolates]) was determined and compared to that of four comparators. MICs (mg/liter) were within two 2-fold dilutions (0.016 to 0.03) for 473/476 determinations. The MIC range spanned four dilutions (0.008 to 0.06). No significant pyrE mutations were found. Modal MIC/WT-UL97.5 (mg/liter) values were 0.03/0.06 (A. terreus and A. flavus), 0.06/0.125 (A. fumigatus and Trichophyton rubrum), and 0.06/0.25 (A. niger and A. nidulans). The MIC range for Scedosporium spp. was 0.008 to 0.25. Olorofim susceptibility was similar for azole-resistant and -susceptible isolates of A. fumigatus but reduced for A. montevidensis and A. chevalieri (MICs of >1). With experience, olorofim susceptibility testing is robust. The testing of isolates from our center showed uniform and broad-spectrum activity. Single-center WT-ULs are suggested.


2011 ◽  
Vol 55 (5) ◽  
pp. 2398-2402 ◽  
Author(s):  
Chau Minh Tran ◽  
Kaori Tanaka ◽  
Yuka Yamagishi ◽  
Takatsugu Goto ◽  
Hiroshige Mikamo ◽  
...  

ABSTRACTWe evaluated thein vitroantianaerobic activity of razupenem (SMP-601, PTZ601), a new parenterally administered carbapenem, against 70 reference strains and 323 clinical isolates. Razupenem exhibited broad-spectrum activity against anaerobes, inhibiting most of the reference strains when used at a concentration of ≤1 μg/ml. Furthermore, it exhibited strong activity, comparable to those of other carbapenems (meropenem and doripenem), against clinically isolated non-fragilis Bacteroidesspp. (MIC90s of 2 μg/ml), with MIC90values of 0.06, 0.03, and 0.5 μg/ml againstPrevotellaspp.,Porphyromonasspp., andFusobacteriumspp., respectively. Clinical isolates of anaerobic Gram-positive cocci,Eggerthellaspp., andClostridiumspp. were highly susceptible to razupenem (MIC90s, 0.03 to 1 μg/ml).


2021 ◽  
Author(s):  
Rebecca I. Johnson ◽  
Beata Boczkowska ◽  
Kendra Alfson ◽  
Taylor Weary ◽  
Heather Menzie ◽  
...  

Ebola virus (EBOV), of the family Filoviridae, is an RNA virus that can cause hemorrhagic fever with a high mortality rate. Defective viral genomes (DVGs) are truncated genomes that have been observed during multiple RNA virus infections, including  in vitro EBOV infection, and have previously been associated with viral persistence and immunostimulatory activity. As DVGs have been detected in cells persistently infected with EBOV, we hypothesized that DVGs may also accumulate during viral replication in filovirus-infected hosts. Therefore, we interrogated sequence data from serum and tissues using a bioinformatics tool in order to identify the presence of DVGs in nonhuman primates (NHPs) infected with EBOV, Sudan virus (SUDV) or Marburg virus (MARV). Multiple 5’ copy-back DVGs (cbDVGs) were detected in NHP serum during the acute phase of filovirus infection. While the relative abundance of total DVGs in most animals was low, serum collected during acute EBOV and SUDV infections, but not MARV infection, contained a higher proportion of short trailer sequence cbDVGs than the challenge stock. This indicated an accumulation of these DVGs throughout infection, potentially due to the preferential replication of short DVGs over the longer viral genome. Using RT-PCR and deep sequencing, we also confirmed the presence of 5’ cbDVGs in EBOV-infected NHP testes, which is of interest due to EBOV persistence in semen of male survivors of infection. This work suggests that DVGs play a role in EBOV infection in vivo and further study will lead to a better understanding of EBOV pathogenesis. Importance The study of filovirus pathogenesis is critical for understanding the consequences of infection and the development of strategies to ameliorate future outbreaks. Defective viral genomes (DVGs) have been detected during EBOV infections in vitro , however their presence in in vivo infections remains unknown. In this study, DVGs were detected in samples collected from EBOV- and SUDV-infected nonhuman primates (NHPs). The accumulation of these DVGs in the trailer region of the genome during infection indicates a potential role in EBOV and SUDV pathogenesis. In particular, the presence of DVGs in the testes of infected NHPs requires further investigation as it may be linked to the establishment of persistence.


Author(s):  
Kay B. Barnes ◽  
Mark I. Richards ◽  
Thomas R. Laws ◽  
Alejandro Núñez ◽  
Joanne E. Thwaite ◽  
...  

Infection with aerosolised Francisella tularensis or Yersinia pestis can lead to lethal disease in humans, if treatment is not initiated promptly. Finafloxacin is a novel fluoroquinolone which has demonstrated broad-spectrum activity against a range of bacterial species in vitro, in vivo and in humans, activity which is superior in acidic, infection-relevant conditions. Human equivalent doses of finafloxacin or ciprofloxacin were delivered at 24 hours (representing prophylaxis), or at 72 or 38 hours (representing treatment) post-challenge with F. tularensis or Y. pestis (respectively), in Balb/c mouse models. In addition, a short course (3 days) of therapy was compared to a longer course (7 days). Both therapies provided a high level of protection against both infections, when administered at 24 hours post-challenge, irrespective of the length of the dosing regimen, however, differences were observed when therapy was delayed. A benefit was demonstrated with finafloxacin, when compared to ciprofloxacin in both models, when therapy was delivered later in the infection. These studies suggest that finafloxacin is an effective alternative therapeutic for the prophylaxis and treatment of inhalational infections with F. tularensis or Y. pestis.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1665
Author(s):  
Irina Leneva ◽  
Nadezhda Kartashova ◽  
Artem Poromov ◽  
Anastasiia Gracheva ◽  
Ekaterina Korchevaya ◽  
...  

An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21–36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.


Sign in / Sign up

Export Citation Format

Share Document