scholarly journals Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rommel J. Gestuveo ◽  
Jamie Royle ◽  
Claire L. Donald ◽  
Douglas J. Lamont ◽  
Edward C. Hutchinson ◽  
...  

AbstractThe escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.

2017 ◽  
Author(s):  
Tom Kazmirchuk ◽  
Kevin Dick ◽  
Daniel. J. Burnside ◽  
Brad Barnes ◽  
Houman Moteshareie ◽  
...  

AbstractThe production of anti-Zika virus (ZIKV) therapeutics has become increasingly important as the propagation of the devastating virus continues largely unchecked. Notably, a causal relationship between ZIKV infection and neurodevelopmental abnormalities has been widely reported, yet a specific mechanism underlying impaired neurological development has not been identified. Here, we report on the design of several synthetic competitive inhibitory peptides against key pathogenic ZIKV proteins through the prediction of protein-protein interactions (PPIs). Often, PPIs between host and viral proteins are crucial for infection and pathogenesis, making them attractive targets for therapeutics. Using two complementary sequence-based PPI prediction tools, we first produced a comprehensive map of predicted human-ZIKV PPIs (involving 209 human protein candidates). We then designed several peptides intended to disrupt the corresponding host-pathogen interactions thereby acting as anti-ZIKV therapeutics. The data generated in this study constitute a foundational resource to aid in the multi-disciplinary effort to combat ZIKV infection, including the design of additional synthetic proteins.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1345
Author(s):  
Rosilainy Surubi Fernandes ◽  
Mariana Rocha David ◽  
Filipe Vieira Santos De Abreu ◽  
Anielly Ferreira-de-Brito ◽  
Noemi R. Gardinali ◽  
...  

Despite worldwide efforts to understand the transmission dynamics of Zika virus (ZIKV), scanty evaluation has been made on the vector competence of Aedes aegypti fed directly on viremic human and non-human primates (NHPs). We blood-fed Ae. aegypti from two districts in Rio de Janeiro on six ZIKV infected pregnant rhesus macaques at several time points, half of which were treated with Sofosbuvir (SOF). Mosquitoes were analyzed for vector competence after 3, 7 and 14 days of incubation. Although viremia extended up to eight days post monkey inoculation, only mosquitoes fed on the day of the peak of viremia, recorded on day two, became infected. The influence of SOF treatment could not be assessed because the drug was administered just after mosquito feeding on day two. The global infection, dissemination and transmission rates were quite low (4.09%, 1.91% and 0.54%, respectively); no mosquito was infected when viremia was below 1.26 × 105 RNA copies/mL. In conclusion, Ae. aegypti vector competence for ZIKV from macaques is low, likely to be due to low viral load and the short duration of ZIKV viremia in primates suitable for infecting susceptible mosquitoes. If ZIKV infection in human and macaques behaves similarly, transmission of the Zika virus in nature is most strongly affected by vector density.


2013 ◽  
Vol 81 ◽  
pp. 91-101 ◽  
Author(s):  
Stephen Tate ◽  
Brett Larsen ◽  
Ron Bonner ◽  
Anne-Claude Gingras

2017 ◽  
Vol 71 ◽  
pp. 180-187 ◽  
Author(s):  
Tom Kazmirchuk ◽  
Kevin Dick ◽  
Daniel. J. Burnside ◽  
Brad Barnes ◽  
Houman Moteshareie ◽  
...  

2017 ◽  
Author(s):  
Danyang Gong ◽  
Tian-hao Zhang ◽  
Dawei Zhao ◽  
Yushen Du ◽  
Travis J. Chapa ◽  
...  

AbstractZika virus (ZIKV) infection causes Guillain-Barré syndrome and severe birth defects. ZIKV envelope (E) protein is the major viral protein involved in cell receptor binding and entry and therefore considered one of the major determinants in ZIKV pathogenesis. Here, we report a gene-wide mapping of functional residues of ZIKV E protein using a mutant library with changes covering every nucleotide position. By comparing the replication fitness of every viral mutant between mosquito and human cells, we identified that mutations affecting N-linked glycosylation at N154 position display the most divergence. Through characterizing individual mutants, we show that, while ablation of N-linked glycosylation selectively benefits ZIKV infection of mosquito cells by enhancing cell entry, it either had little impact on ZIKV infection on certain human cells or decreased infection through entry factor DC-SIGN. In conclusion, we define the roles of individual residues of ZIKV envelope protein, which contribute to ZIKV replication fitness in human and mosquito cells.HighlightsGene-wide mapping of functional residues of E protein in human and mosquito cells.Mutations affecting N-linked glycosylation display the most dramatic difference.N-linked glycosylation decreases ZIKV entry into mosquito cells.N-linked glycosylation is important for DC-SIGN mediated infection of human cells.


Author(s):  
Fabian Soltermann ◽  
Weston B. Struwe ◽  
Philipp Kukura

Protein–protein interactions are involved in the regulation and function of the majority of cellular processes.


2019 ◽  
Vol 16 (3) ◽  
pp. 199-209
Author(s):  
Zhenghu Jia ◽  
Hui Liu ◽  
Mei Song ◽  
Chengmao Yang ◽  
Yapu Zhao ◽  
...  

Background: Intestinal flora dynamically affects the host&#039;s systemic immune system. Liver is one of the organs that may be affected by intestinal microbiota. </P><P> Materials and Methods: In this study, we aimed to identify proteome level differences between liver tissue from mice cleared intestinal flora and control using tandem mass spectrometry (LC-MS/MS) and label free quantification. Additionally, protein-protein interactions were mapped by STRING, and also, the enrichment of inflammation-related signaling pathways and biological processes was identified using GO and IPA network system. RT-PCR and Western blot were used for validation of the proteomics findings. Results: Our study demonstrated that mice with cleared intestinal flora exhibited decreased sensitivity to Concanavalin A induced acute hepatitis. 324 Proteins in liver were differently expressed after intestinal flora clearance for one week while 210 proteins were differently expressed after intestinal flora clearance for two weeks. Furthermore, five of the identified proteins were validated by western blotting and further investigated by semi-quantitative RT-PCR. Conclusion: Our results showed that intestinal flora clearance in mice could reduce sensitivity to Concanavalin A induced liver injury and influence the expression of proteins in liver, which provides a clue for studying the relationship between gut bacteria and Concanavalin A induced hepatitis.


Sign in / Sign up

Export Citation Format

Share Document