Introduction: The Place of Population Genetics in Evolutionary Biology

Author(s):  
G. de Jong ◽  
W. Scharloo
Author(s):  
Daniel L. Hartl

A Primer of Population Genetics and Genomics, 4th edition, has been completely revised and updated to provide a concise but comprehensive introduction to the basic concepts of population genetics and genomics. Recent textbooks have tended to focus on such specialized topics as the coalescent, molecular evolution, human population genetics, or genomics. This primer bucks that trend by encouraging a broader familiarity with, and understanding of, population genetics and genomics as a whole. The overview ranges from mating systems through the causes of evolution, molecular population genetics, and the genomics of complex traits. Interwoven are discussions of ancient DNA, gene drive, landscape genetics, identifying risk factors for complex diseases, the genomics of adaptation and speciation, and other active areas of research. The principles are illuminated by numerous examples from a wide variety of animals, plants, microbes, and human populations. The approach also emphasizes learning by doing, which in this case means solving numerical or conceptual problems. The rationale behind this is that the use of concepts in problem-solving lead to deeper understanding and longer knowledge retention. This accessible, introductory textbook is aimed principally at students of various levels and abilities (from senior undergraduate to postgraduate) as well as practising scientists in the fields of population genetics, ecology, evolutionary biology, computational biology, bioinformatics, biostatistics, physics, and mathematics.


Author(s):  
Michael O. Hardimon

The minimalist concept of race represents the barest characterization of the ordinary concept race possible. Minimalist races are groups of human beings distinguished by patterns of visible physical features, groups whose members are linked by a common ancestry peculiar to members of the group, and which originate from a distinctive geographic location. Minimalist races exist because there are existing human groups that satisfy the minimalist concept of race. Their existence is not precluded by the findings of population genetics. Appeal to contemporary studies in evolutionary biology and population genetics makes it possible to rebut the objection that minimalist races do not exist because they are not genetically distinct.


2021 ◽  
pp. 11-45
Author(s):  
J. Arvid Ågren

This chapter traces the origins of the gene’s-eye view through three sections of evolutionary biology. The first is adaptationism, the tradition that takes the appearance of design in living world to be the cardinal problem a theory of evolution needs to explain. The chapter shows how this view has been especially prominent in British biology, owing the strong standing of natural theology and the writings of William Paley. The second is the emergence of population genetics during the modern synthesis. Here, the work of R.A. Fisher was particularly important. The third and final section was the levels selection debate and the rejection of group selection. G.C. Williams led the way the way and the origin of the gene’s-eye view culminated with the publication of The Selfish Gene.


Author(s):  
Randolph M. Nesse ◽  
Richard Dawkins

The role of evolutionary biology as a basic science for medicine has been expanding rapidly. Some evolutionary methods are already widely applied in medicine, such as population genetics and methods for analysing phylogenetic trees. Newer applications come from seeking evolutionary as well as proximate explanations for disease. ...


Author(s):  
Randolph M. Nesse ◽  
Richard Dawkins

The role of evolutionary biology as a basic science for medicine is expanding rapidly. Some evolutionary methods are already widely applied in medicine, such as population genetics and methods for analysing phylogenetic trees. Newer applications come from seeking evolutionary as well as proximate explanations for disease. Traditional medical research is restricted to proximate studies of the body’s mechanism, but separate evolutionary explanations are needed for why natural selection has left many aspects of the body vulnerable to disease. There are six main possibilities: mismatch, infection, constraints, trade-offs, reproduction at the cost of health, and adaptive defences. Like other basic sciences, evolutionary biology has limited direct clinical implications, but it provides essential research methods, encourages asking new questions that foster a deeper understanding of disease, and provides a framework that organizes the facts of medicine.


1990 ◽  
Vol 36 ◽  
pp. 567-579 ◽  

Sewall Wright's active life spanned the development of genetics from a new discipline when the principles of inheritance were still being elucidated to the technology of recombinant gene construction and insertion. He was one of the major pioneers of population genetics, which gave a quantitative basis to the studies of evolution, of variation in natural populations and of animal and plant breeding. He contributed most significantly to methods and ideas over a long period, indeed his four volume treatise was written long after he formally ‘retired’ and his last paper (211) was published a few days before his death at the age of 98. In the field of population genetics Wright developed the method of path coefficients, which he used to analyse quantitative genetic variation and relationship, but which has been applied to subjects as diverse as economics, the ideas of inbreeding coefficient and F -statistics which form the basis of analysis of population structure, the theory of variation in gene frequency among populations, and the shifting balance theory of evolution, which remains a topic of active research and controversy. Wright contributed to physiological genetics, notably analysis of the inheritance of coat colour in the guinea pig, and in particular the epistatic relationships among the genes involved. There was a critical interplay between his population and physiological work, in that the analysis of finite populations on the one hand and of epistatic interactions on the other are the bases of Wright’s development of the shifting balance theory. A full and enlightening biography of Sewall Wright which traces his influence on evolutionary biology and his interactions with other important workers was published recently (Provine 1986) and shorter appreciations have appeared since his death, notably by Crow (1988), Wright’s long-time colleague. This biography relies heavily on Provine’s volume, and does no more than summarize Wright’s extensive contributions. Many of his important papers have been reprinted recently (1986).


2011 ◽  
Vol 1 (1) ◽  
pp. e2
Author(s):  
Jeffrey H. Schwartz

The Evolutionary or Modern Evolutionary Synthesis (here identified as the Synthesis) has been portrayed as providing the foundation for uniting a supposed disarray of biological disciplines through the lens of Darwinism fused with population genetics. Rarely acknowledged is that the Synthesis’s success was also largely due to its architects’ effectiveness in submerging British and German attempts at a synthesis by uniting the biological sciences through shared evolutionary concerns. Dobzhansky and Mayr imposed their bias toward population genetics, population (as supposedly opposed to typological) thinking, and Morgan’s conception of specific genes for specific features (here abbreviated as genes for) on human evolutionary studies. Dobzhansky declared that culture buffered humans from the whims of selection. Mayr argued that as variable as humans are now, their extinct relatives were even more variable; thus the human fossil did not present taxic diversity and all known fossils could be assembled into a gradually changing lineage of time-successive species. When Washburn centralized these biases in the new physical anthropology the fate of paleoanthropology as a non-contributor to evolutionary theory was sealed. Molecular anthropology followed suit in embracing Zuckerkandl and Pauling’s assumption that molecular change was gradual and perhaps more importantly continual. Lost in translation was and still is an appreciation of organismal development. Here I will summarize the history of these ideas and their alternatives in order to demonstrate assumptions that still need to be addressed before human evolutionary studies can more fully participate in what is a paradigm shift-in-the-making in evolutionary biology.


2016 ◽  
Author(s):  
Stéphane Joost ◽  
Solange Duruz ◽  
Estelle Rochat ◽  
Ivo Widmer

Geographical Information Systems (GIS) are considered to be applications-led technology. Consequently, geographic information scientists commonly find themselves as guest in host disciplines in order to best exploit spatial analysis tools and methods, appropriately guided by experts in the field. An example is population genetics in evolutionary biology. Genetic information being linked to living organisms can be partially characterized by geographic coordinates. A research field named landscape genetics emerged at the intersection of genetics, environmental and geographic information science. Geocomputation and programming efforts carried out with the help of open sources technologies and dedicated to the analysis of genetic data gather together a key scientific community whose goal is to extract new knowledge from the present data tsunami caused by the advent of high throughput molecular data and of new sources of high resolution environmental data. While the level of sophistication of the population genetics functions included in the analytical frameworks developed until now are cutting-edge, advanced geo-competences are also required to reinforce the spatial side of this discipline. They will be particularly useful in conservation programmes for wildlife preservation, but also in farm animal genetic resources conservation.


2016 ◽  
Author(s):  
Stéphane Joost ◽  
Solange Duruz ◽  
Estelle Rochat ◽  
Ivo Widmer

Geographical Information Systems (GIS) are considered to be applications-led technology. Consequently, geographic information scientists commonly find themselves as guest in host disciplines in order to best exploit spatial analysis tools and methods, appropriately guided by experts in the field. An example is population genetics in evolutionary biology. Genetic information being linked to living organisms can be partially characterized by geographic coordinates. A research field named landscape genetics emerged at the intersection of genetics, environmental and geographic information science. Geocomputation and programming efforts carried out with the help of open sources technologies and dedicated to the analysis of genetic data gather together a key scientific community whose goal is to extract new knowledge from the present data tsunami caused by the advent of high throughput molecular data and of new sources of high resolution environmental data. While the level of sophistication of the population genetics functions included in the analytical frameworks developed until now are cutting-edge, advanced geo-competences are also required to reinforce the spatial side of this discipline. They will be particularly useful in conservation programmes for wildlife preservation, but also in farm animal genetic resources conservation.


Author(s):  
Anya Plutynski

Huxley coined the phrase, the ‘modern synthesis’ to refer to the acceptance by a vast majority of biologists in the mid-twentieth century of a ‘synthetic’ view of evolution. According to its main chroniclers, Mayr and Provine, the ‘synthesis’ consisted in the acceptance of natural selection acting on minor hereditary variation as the primary cause of both adaptive change within populations and major changes, such as speciation, and the evolution of higher taxa (e.g. families and genera). However, the dating and substance of the synthesis is controversial. The evolutionary synthesis may be broken down into two periods, the ‘early’ synthesis from 1918 to 1932, and the later, ‘modern synthesis’ from 1936 to 1947. The authors most commonly associated with the early synthesis are J. B. S. Haldane, R. A. Fisher, and S. Wright. These three authored a number of important advances; first, they demonstrated the compatibility of a Mendelian theory of inheritance with the results of Biometry, a study of the correlations of measures of traits between relatives. Second, they developed the theoretical framework for evolutionary biology, classical population genetics. This is a family of mathematical models representing evolution as change in genotype frequencies, from one generation to the next, as a product of selection, mutation, migration, and drift, or chance. Third, there was a broader synthesis of population genetics with cytology (cell biology), genetics, and biochemistry, as well as both empirical and mathematical demonstrations to the effect that very small selective forces acting over a relatively long time were able to generate substantial evolutionary change. The later ‘modern’ synthesis is most often identified with the work of Mayr, Dobzhansky and Simpson. There was a major institutional change in biology at this stage, insofar as different subdisciplines formerly housed in different departments, and using different methods, were united under the institutional umbrella of ‘evolutionary biology’. Mayr played an important role as a community architect, in founding the Society for the Study of Evolution, and the journal Evolution, which drew together work in systematics, biogeography, paleontology, and theoretical population genetics. The synthesis presents an occasion for addressing a number of important philosophical questions about the nature of theories, explanation, progress in science, theory unification, and reduction.


Sign in / Sign up

Export Citation Format

Share Document