The Impact of Nonwork-Related Impairments of Organ Functions on the Toxicokinetics and Toxicodynamics of Industrial Chemicals

Author(s):  
R. Lauwerys
Author(s):  
Valeria Calsolaro ◽  
Giuseppe Pasqualetti ◽  
Filippo Niccolai ◽  
Nadia Caraccio ◽  
Fabio Monzani

Endocrine disruptor compounds are exogenous agents able to interfere with a gland function, exerting their action across different functional passages, from the synthesis to the metabolism and binding to receptors of the hormone produced. Several issues such as different levels and time of exposure and different action across different ages as well as gender, make the study of endocrine disruptors still a challenge. Thyroid is very sensitive to the action of disruptors, and considering the importance of a correct thyroid function for physical and cognitive functioning, addressing this topic should be considered a priority. In this review we examined the most recent studies, many of them concentrating on maternal and child exposure, conducted to assess the impact of industrial chemicals which showed an impact on thyroid function. So far, the number of studies conducted on that topic is not sufficient to provide solid conclusions and lead to homogeneous guidelines. The lack of uniformity is certainly due to differences in areas and populations examined, the different conditions of exposures and the remarkable inter-subject variability. Nonetheless, the European Commission for Health and Food Safety is implementing recommendations to ensure that substances identified as endocrine disruptors will be withdrawn from the market.


Author(s):  
Rongchen Zhu ◽  
Xiaofeng Hu ◽  
Xin Li ◽  
Han Ye ◽  
Nan Jia

The chemical terrorist attack is an unconventional form of terrorism with vast scope of influence, strong concealment, high technical means and severe consequences. Chemical terrorism risk refers to the uncertainty of the effects of terrorist organisations using toxic industrial chemicals/drugs and classic chemical weapons to attack the population. There are multiple risk factors infecting chemical terrorism risk, such as the threat degree of terrorist organisations, attraction of targets, city emergency response capabilities, and police defense capabilities. We have constructed a Bayesian network of chemical terrorist attacks to conduct risk analysis. The scenario analysis and sensitivity analysis are applied to validate the model and analyse the impact of the vital factor on the risk of chemical terrorist attacks. The results show that the model can be used for simulation and risk analysis of chemical terrorist attacks. In terms of controlling the risk of chemical terrorist attack, patrol and surveillance are less critical than security checks and police investigations. Security check is the most effective approach to decrease the probability of successful attacks. Different terrorist organisations have different degrees of threat, but the impacts of which are limited to the success of the attack. Weapon types and doses are sensitive to casualties, but it is the level of emergency response capabilities that dominates the changes in casualties. Due to the limited number of defensive resources, to get the best consequence, the priority of the deployment of defensive sources should be firstly given to governmental buildings, followed by commercial areas. These findings may provide the theoretical basis and method support for the combat of the public security department and the safety prevention decision of the risk management department.


2010 ◽  
Vol 62 (3) ◽  
pp. 684-692 ◽  
Author(s):  
A. Musolff ◽  
S. Leschik ◽  
M.-T. Schafmeister ◽  
F. Reinstorf ◽  
G. Strauch ◽  
...  

Xenobiotics in urban receiving waters are an emerging problem. A sound knowledge of xenobiotic input, distribution and fate in the aquatic environment is a prerequisite for risk assessments. Methods to assess the impact of xenobiotics on urban receiving waters should address the diverse characteristics of the target compounds and the spatiotemporal variability of concentrations. Here, we present results from a one-year-monitoring program concerning concentrations of pharmaceuticals, additives from personal care products and industrial chemicals in an urban drainage catchment in untreated and treated wastewater, surface water and groundwater. Univariate and multivariate statistical methods were applied to characterize the xenobiotic concentrations. Correlation and principal component analysis revealed a pronounced pattern of xenobiotics in the surface water samples. The concentrations of several xenobiotics were characterized by a negative proportionality to the water temperature. Therefore, seasonal attenuation is assumed to be a major process influencing the measured concentrations. Moreover, dilution of xenobiotics the surface water was found to significantly influence the concentrations. These two processes control more the xenobiotic occurrence in the surface water than the less pronounced concentration pattern in the wastewater sources. For the groundwater samples, we assume that foremost attenuation processes lead to the found differentiation of xenobiotics.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document