Chemical Tracers — A New and Desirable Technique?

Author(s):  
R. Spanhoff ◽  
J. M. Suijlen
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron B. Carlisle ◽  
Elizabeth Andruszkiewicz Allan ◽  
Sora L. Kim ◽  
Lauren Meyer ◽  
Jesse Port ◽  
...  

AbstractThe Cookiecutter shark (Isistius brasiliensis) is an ectoparasitic, mesopelagic shark that is known for removing plugs of tissue from larger prey, including teleosts, chondrichthyans, cephalopods, and marine mammals. Although this species is widely distributed throughout the world’s tropical and subtropical oceanic waters, like many deep-water species, it remains very poorly understood due to its mesopelagic distribution. We used a suite of biochemical tracers, including stable isotope analysis (SIA), fatty acid analysis (FAA), and environmental DNA (eDNA), to investigate the trophic ecology of this species in the Central Pacific around Hawaii. We found that large epipelagic prey constituted a relatively minor part of the overall diet. Surprisingly, small micronektonic and forage species (meso- and epipelagic) are the most important prey group for Cookiecutter sharks across the studied size range (17–43 cm total length), with larger mesopelagic species or species that exhibit diel vertical migration also being important prey. These results were consistent across all the tracer techniques employed. Our results indicate that Cookiecutter sharks play a unique role in pelagic food webs, feeding on prey ranging from the largest apex predators to small, low trophic level species, in particular those that overlap with the depth distribution of the sharks throughout the diel cycle. We also found evidence of a potential shift in diet and/or habitat with size and season. Environmental DNA metabarcoding revealed new prey items for Cookiecutter sharks while also demonstrating that eDNA can be used to identify recent prey in stomachs frozen for extended periods. Integrating across chemical tracers is a powerful tool for investigating the ecology of elusive and difficult to study species, such as meso- and bathypelagic chondrichthyans, and can increase the amount of information gained from small sample sizes. Better resolving the foraging ecology of these mesopelagic predators is critical for effective conservation and management of these taxa and ecosystems, which are intrinsically vulnerable to overfishing and exploitation.


2021 ◽  
Vol 502 (3) ◽  
pp. 4064-4073
Author(s):  
Y Ellinger ◽  
M Lattelais ◽  
F Pauzat ◽  
J-C Guillemin ◽  
B Zanda

ABSTRACT The analysis of the organic matter of meteorites made it possible to identify over 70 amino acids (AA), including 8 of those found in living organisms. However, their relative abundances vary drastically with the type of the carbonaceous chondrite, even for isomers of same chemical formula. In this report, we address the question whether this difference may have its origin in the relative stability of these isomers according to the conditions they experienced when they were formed and after. To this end, we rely on the fact that for most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle, MEP). Using quantum density functional theory (DFT) simulations, we investigate the relative stability of the lowest energy isomers of alanine (Ala) and amino butyric acid (ABA) in the neutral, protonated, and zwitterionic structures together with corresponding nitrile precursors. It is shown that β-alanine and γ-ABA are the most stable in a protonated form, whereas α-AA are the most stable in the zwitterionic and nitrile structures. The different composition of the carbonaceous chondrites CIs and CMs could be linked to the chemical context of the aqueous alterations of the parent bodies.


2010 ◽  
Vol 10 (2) ◽  
pp. 453-462 ◽  
Author(s):  
Y. Tohjima ◽  
H. Mukai ◽  
S. Hashimoto ◽  
P. K. Patra

Abstract. In-situ observations of atmospheric CO2 and CH4 at Hateruma Island (24.05° N, 123.80° E, 47 m a.s.l), Japan shows large synoptic scale variations during a 6-month period from November to April, when the sampled air is predominantly of continental origin due to the Asian winter monsoon. Synoptic scale variations are extracted from the daily averaged values for the years between 1996 and 2007, along with the annual standard deviations (σCO2 and σCH4 for CO2 and CH4, respectively) for the relevant 6-month period. During this 6-month period the absolute mixing ratios of CO2 and CH4 at Hateruma are also elevated compared to those at two sites in the central North Pacific Ocean. The temporal change in σCO2 shows a systematic increase over the 12-year period, with elevated excursions in 1998 and 2003; there is no clear increase in σCH4. We also find that the σCO2/σCH4 ratio increases gradually from 1996 to 2002 and rapidly after 2002 without any extreme deviations that characterised σCO2. The σCO2/σCH4 ratio correlates closely with the recent rapid increase in fossil carbon emissions from China, as indicated in the Carbon Dioxide Information Analysis Center (CDIAC) database. This methodology can be applied to multiple chemical tracers of sufficient lifetime, for tracking overall changes in regional emissions.


2013 ◽  
Vol 70 (8) ◽  
pp. 2566-2573 ◽  
Author(s):  
Xun Jiang ◽  
Jingqian Wang ◽  
Edward T. Olsen ◽  
Thomas Pagano ◽  
Luke L. Chen ◽  
...  

Abstract Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling between the stratosphere and troposphere, the authors applied a principal component analysis to the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) geopotential height data at 17 pressure levels. Two events (April 2003 and March 2005) that have strong couplings between the stratosphere and troposphere were chosen to investigate the influence of SSW on AIRS midtropospheric CO2. The authors investigated the temporal and spatial variations of AIRS midtropospheric CO2 before and after the SSW events and found that the midtropospheric CO2 concentrations increased by 2–3 ppm within a few days after the SSW events. These results can be used to better understand how the chemical tracers respond to the large-scale dynamics in the high latitudes.


2007 ◽  
Vol 7 (3) ◽  
pp. 6603-6629 ◽  
Author(s):  
I. Pisso ◽  
B. Legras

Abstract. Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and parametrized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Center for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We have investigated cases in subtropical latitudes using data from HIBISCUS campaign. Upper bound on the vertical diffusivity is found to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.


2021 ◽  
Author(s):  
Amy Louca ◽  
Yamila Miguel ◽  
Shang-Min Tsai

<p class="p1">Observations of exoplanets used to characterize the chemistry and dynamics of atmospheres have developed considerably throughout the years. Nonetheless, it remains a difficult task to give a full and detailed description using solely observations. With future space missions such as JWST and ARIEL, both expected to be launched within this decade, it becomes even more crucial to be able to fully explain and predict the underlying chemistry and physics involved. In this research, we focus on modeling star-planet interactions by using synthetic flare spectra to predict chemical tracers for future missions. We make use of a chemical kinetics code that includes synthetic time-dependent stellar spectra and thermal atmospheric escape to simulate the atmospheres of known exoplanets. Using a radiative transfer model we then retrieve emission spectra. This ongoing study is focused on various known planetary systems of which the stellar spectrum has been obtained by the (mega-)MUSCLES collaboration. Preliminary results on these systems show that stellar flares and thermal escape can have a significant effect on the chemistry in atmospheres. </p>


2020 ◽  
Author(s):  
Dmitry Chaplygin ◽  
Marat Azamatov ◽  
Damir Khamadaliev ◽  
Viktor Yashnev ◽  
Igor Novikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document