Sedimentation Rates and Organic Matter in Various Depositional Environments

1992 ◽  
pp. 385-408
Author(s):  
Gerhard Einsele
Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


2016 ◽  
Vol 73 (12) ◽  
pp. 1712-1722 ◽  
Author(s):  
Sarah S. Roley ◽  
Jennifer L. Tank

Freshwater mussels are in decline worldwide, but it remains challenging to link specific stressors to mussel declines. The clubshell mussel (Pleurobema clava) is a federally endangered species that spends most of its life completely buried beneath stream sediments. We tested the hypothesis that clubshell’s decline stems, in part, from low pore water dissolved oxygen (DO) concentrations and toxic ammonia (NH3) levels, resulting from sedimentation of interstitial pore spaces. We measured pore water DO, NH3, interstitial sedimentation rates, and sediment organic matter content in the Tippecanoe River (Indiana, USA) at sites that spanned a range of clubshell populations, including two sites devoid of clubshell. We found little evidence for pore water NH3 stress, but pore water DO generally declined with clubshell population and dipped below stress thresholds more frequently at non-clubshell sites than at sites with clubshell. In addition, interstitial sedimentation rates generally increased as clubshell populations declined, suggesting that the low DO concentrations were the result of decreased pore water – surface water exchange. As a result, we conclude that maintaining or improving habitat for clubshell mussels will require the reduction of riverine sediment loading.


Sign in / Sign up

Export Citation Format

Share Document