The Action of Colicins in other Cells than Rod-Shaped Enteric Bacteria

Plasmids ◽  
1977 ◽  
pp. 225-232 ◽  
Author(s):  
J. Šmarda
Keyword(s):  
2014 ◽  
Vol 3 (1) ◽  
pp. 150-158 ◽  
Author(s):  
Mohey A. Hassanain ◽  
Nawal A. Hassanain ◽  
Esam A. Hobballa ◽  
Fatma H. Abd- El Zaher ◽  
Mohamed Saber M. Saber

A surface sample representing a high contaminated loamy sand soil irrigated with sewage effluent since 30 years and was cultivated with artichoke was collected from Abu-Rawash sewage farm. The existence of HVC, enteric infectious bacteria and parasites in sewaged soil found to be negative for the forward and positive for the latter's. Out of the 30 samples separated from the sewaged soil sample, only 3 samples contained parasitic fauna of developed and undeveloped Ascaris (10%) and five samples contained Entamoeba coli. Results showed that the number of Ascaris eggs/gm soil was 0.017 and the number of E. coli/gm was 0.26. Decontamination of soil parasites was effective using either calcium hypochlorite or potassium permanganate. Salmonella, Vibrio and Campelobacter were detected in the high contaminated sewaged soil and survived for 120 days in the sewaged soil under all control and bioremediated treatments irrigated with either sewage effluent or water.


1993 ◽  
Vol 27 (12) ◽  
pp. 223-226
Author(s):  
J.-F. Guillaud ◽  
M. Pommepuy ◽  
E. Dupray ◽  
J.-C. Salomon ◽  
B. Thouvenin

The aim of this paper is to present some results of bacterial studies which were developed by IFREMER in coastal discharge areas of urban wastewaters; they are focused on the determination of bacterial inputs by wastewater treatment plants, the role of environmental factors on the enteric bacteria survival in the coastal zone, and the modelling of bacteria transport and disappearance in order to provide useful management information for minimizing faecal pollution in the coastal zone.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 291-298
Author(s):  
Sally A. Anderson ◽  
Gillian D. Lewis ◽  
Michael N. Pearson

Specific gene probe detection methods that utilise a non-selective culturing step were tested for the ability to recognise the presence of quiescent enteric bacteria (Escherichia coli and Enterococcus faecalis ) within illuminated freshwater and seawater microcosms. An E. coli specific uidA gene probe and a 23S rRNA oligonucleotide probe for Enterococci were compared with recoveries using membrane filtration and incubation on selective media (mTEC and mE respectively). From these microcosm experiments a greater initial detection (from 4 hours to 1 day) of E. coli and Ent. faecalis using gene probe methods was observed. Additionally, a comparison of E. coli direct viable counts (DVC) in sunlight exposed microcosms with recoveries by selective media and gene probe methods revealed a large number of viable non-culturable cells. This suggests that enumeration of E. coli by a gene probe method is limited by the replication of the bacteria during the initial non-selective enrichment step. The detection of stressed Ent. faecalis by the oligonucleotide gene probe method was significantly greater than recovery on selective mE agar, indicating an Enterococci non-growth phase.


2001 ◽  
Vol 183 (13) ◽  
pp. 4004-4011 ◽  
Author(s):  
Devorah Friedberg ◽  
Michael Midkiff ◽  
Joseph M. Calvo

ABSTRACT Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, includingasnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated withE. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein fromHaemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having anlrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies withlrp + and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. colicell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1094
Author(s):  
Emily S. Bailey ◽  
Nikki Beetsch ◽  
Douglas A. Wait ◽  
Hemali H. Oza ◽  
Nirmala Ronnie ◽  
...  

It is estimated that 780 million people do not have access to improved drinking water sources and approximately 2 billion people use fecally contaminated drinking water. Effective point-of-use water treatment systems (POU) can provide water with sufficiently reduced concentrations of pathogenic enteric microorganisms to not pose significant health risks to consumers. Household water treatment (HWT) systems utilize various technologies that physically remove and/or inactivate pathogens. A limited number of governmental and other institutional entities have developed testing protocols to evaluate the performance of POU water treatment systems. Such testing protocols are essential to documenting effective performance because inferior and ineffective POU treatment technologies are thought to be in widespread use. This critical review examines specific practices, procedures and specification of widely available POU system evaluation protocols. Testing protocols should provide standardized and detailed instructions yet be sufficiently flexible to deal with different treatment technologies, test microbe priorities and choices, testing facility capabilities and public health needs. Appropriate infectivity or culture assays should be used to quantify test enteric bacteria, viruses and protozoan parasites, or other appropriate surrogates or substitutes for them, although processes based on physical removal can be tested by methods that detect microbes as particles. Recommendations include further research of stock microbe production and handling methods to consistently yield test microbes in a realistic state of aggregation and, in the case of bacteria, appropriately physiologically stressed. Bacterial quantification methods should address the phenomenon of bacterial injury and repair in order to maximally recover those that are culturable and potentially infectious. It is only with harmonized national and international testing protocols and performance targets that independent and unbiased testing can be done to assure consumers that POU treatment technologies are able to produce water of high microbial quality and low health risk.


2016 ◽  
Vol 292 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Jisun Kim ◽  
Chulwoo Park ◽  
James A. Imlay ◽  
Woojun Park

2009 ◽  
Vol 107 (5) ◽  
pp. 1651-1657 ◽  
Author(s):  
A. Chandran ◽  
S.K. Pradhan ◽  
H. Heinonen-Tanski
Keyword(s):  

Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2515-2528 ◽  
Author(s):  
M. Sofia Ciampi

Rho-dependent transcription terminators participate in sophisticated genetic regulatory mechanisms, in both bacteria and phages; they occur in regulatory regions preceding the coding sequences of genes and within coding sequences, as well as at the end of transcriptional units, to prevent readthrough transcription. Most Rho-dependent terminators have been found in enteric bacteria, but they also occur in Gram-positive bacteria and may be widespread among bacteria. Rho-dependent termination requires both cis-acting elements, on the mRNA, and trans-acting factors. The only cis-acting element common to Rho-dependent terminators is richness in rC residues. Additional sequence elements have been observed at different Rho termination sites. These ‘auxiliary elements' may assist in the termination process; they differ among terminators, their occurrence possibly depending on the function and sequence context of the terminator. Specific nucleotides required for termination have also been identified at Rho sites. Rho is the main factor required for termination; it is a ring-shaped hexameric protein with ATPase and helicase activities. NusG, NusA and NusB are additional factors participating in the termination process. Rho-dependent termination occurs by binding of Rho to ribosome-free mRNA, C-rich sites being good candidates for binding. Rho's ATPase is activated by Rho–mRNA binding, and provides the energy for Rho translocation along the mRNA; translocation requires sliding of the message into the central hole of the hexamer. When a polymerase pause site is encountered, the actual termination occurs, and the transcript is released by Rho's helicase activity. Many aspects of this process are still being studied. The isolation of mutants suppressing termination, site-directed mutagenesis of cis-acting elements in Rho-dependent termination, and biochemistry, are and will be contributing to unravelling the still undefined aspects of the Rho termination machinery. Analysis of the more sophisticated regulatory mechanisms relying on Rho-dependent termination may be crucial in identifying new essential elements for termination.


Microbiology ◽  
2008 ◽  
Vol 154 (9) ◽  
pp. 2533-2545 ◽  
Author(s):  
Daniel M. Stoebel ◽  
Andrew Free ◽  
Charles J. Dorman

Sign in / Sign up

Export Citation Format

Share Document