Analysis of Three-dimensional Separated Flow Using Interacting Boundary-Layer Theory

1987 ◽  
pp. 163-178 ◽  
Author(s):  
David E. Edwards
2019 ◽  
Vol 870 ◽  
pp. 680-697
Author(s):  
Dominik K. Puckert ◽  
Ulrich Rist

The interaction of disturbance modes behind an isolated cylindrical roughness element in a laminar boundary layer is investigated by means of hot-film anemometry and particle image velocimetry in a low-turbulence laminar water channel. Both sinuous and varicose disturbance modes are found in the wake of a roughness with unit aspect ratio (diameter/height $=$ 1). Interestingly, the frequency of the varicose mode synchronizes with the first harmonic of the sinuous mode when the critical Reynolds number from three-dimensional global linear stability theory is exceeded. The coupled motion of sinuous and varicose modes is explained by frequency lock-in. This mechanism is of great importance in many aspects of nature, but has not yet received sufficient attention in the field of boundary-layer theory. A Fourier mode decomposition provides detailed analyses of sinuous and varicose modes. The observation is confirmed by a second experiment with the same aspect ratio at a different position in the laminar boundary layer. When the aspect ratio is increased, the flow is fully governed by the varicose mode. Thus, no frequency lock-in can be observed in this case. The significance of this work is to explain how sinuous and varicose modes can co-exist behind a roughness and to propose a mechanism which is well established in physics but not encountered often in boundary-layer theory.


1997 ◽  
Vol 4 (1) ◽  
pp. 19-27 ◽  
Author(s):  
J. Arkani-Hamed

Abstract. The Rayleigh number-Nusselt number, and the Rayleigh number-thermal boundary layer thickness relationships are determined for the three-dimensional convection in a spherical shell of constant physical parameters. Several models are considered with Rayleigh numbers ranging from 1.1 x 102 to 2.1 x 105 times the critical Rayleigh number. At lower Rayleigh numbers the Nusselt number of the three-dimensional convection is greater than that predicted from the boundary layer theory of a horizontal layer but agrees well with the results of an axisymmetric convection in a spherical shell. At high Rayleigh numbers of about 105 times the critical value, which are the characteristics of the mantle convection in terrestrial planets, the Nusselt number of the three-dimensional convection is in good agreement with that of the boundary layer theory. At even higher Rayleigh numbers, the Nusselt number of the three-dimensional convection becomes less than those obtained from the boundary layer theory. The thicknesses of the thermal boundary layers of the spherical shell are not identical, unlike those of the horizontal layer. The inner thermal boundary is thinner than the outer one, by about 30- 40%. Also, the temperature drop across the inner boundary layer is greater than that across the outer boundary layer.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 25-26
Author(s):  
Yoichi KINOUE ◽  
Toshiaki SETOGUCHI ◽  
Kenji KANEKO ◽  
Takeshi MURASAKI ◽  
Masahiro INOUE

Author(s):  
Toyotaka Sonoda ◽  
Toshiyuki Arima ◽  
Mineyasu Oana

Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the same geometry as that used to connect compressor spools on our experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with a similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e. thin and thick IBL) were used. Results showed that large differences of flow pattern were observed at the S-Shaped duct exit between two types of the IBL, though the value of “net” total pressure loss has not been remarkably changed. According to “overall” total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor as a large inlet distortion, and strongly affect the downstream compressor performance. There is a much-distorted three-dimensional flow pattern at the exit of S-Shaped duct. This means that the aerodynamic sensitivity of S-Shaped duct to the IBL thickness is very high. Therefore, sufficient carefulness is needed to design not only downstream aerodynamic component (for example centrifugal impeller) but also upstream aerodynamic component (LPC OGV).


1982 ◽  
Vol 104 (4) ◽  
pp. 796-804 ◽  
Author(s):  
Fumikata Kano ◽  
Noriyuki Tazawa ◽  
Yoshiteru Fukao

The aerodynamic performance of impellers and diffusers of the large centrifugal compressor were studied. A performance design procedure based on the quasi-three-dimensional flow analysis which is combined with the boundary layer theory was developed. The conditions of the boundary layer at the impeller exit and at the diffuser vane throat were calculated, and the three-dimensional measurements were carried out. This result shows that the low momentum flow is accumulated at the corner of the shroud and the blade suction side of the impeller. These results were applied to the development of a large four-stage isothermal compressor which handles the air for an air separation apparatus. This was tested in the field and showed an isothermal efficiency of 76 percent.


1978 ◽  
Vol 20 (6) ◽  
pp. 327-333
Author(s):  
J. K. Aggarwal ◽  
B. J. Bellhouse

A new hot-film probe intended for the measurement of velocity, in magnitude and direction, in three-dimensional water flow is described. Using boundary layer theory, the response of the probe to steady velocity is derived and is found to agree closely with calibrations. The probe has proved to be robust and durable; it produced reliable and repeatable calibrations when towed in a water tank. The method of data acquisition and the technique used for computing the velocity vector are reported.


Author(s):  
T. B. Ferguson

The trends in fluid mechanical development of centrifugal compressors are discussed. The main developments in the impeller are the application of quasi-three-dimensional isentropic methods together with some separation criteria based on two-dimensional turbulent boundary layer theory. Diffusers are sometimes designed on a simplified two-dimensional basis but channel diffusers still appear to be preferred especially at high Mach numbers. Recent visualization studies have shown how far the actual flow in impellers may depart from the actual model and there is a lack of systematic quantitative experimental work on limiting blade loading and pressure gradients both in impellers and diffusers. A summary of gas turbine centrifugal compressors is also made.


Sign in / Sign up

Export Citation Format

Share Document