Bandlimited Trajectory Planning for Continuous Path Industrial Robots

Author(s):  
J. T. Huang
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

Author(s):  
Aniruddha V. Shembekar ◽  
Yeo Jung Yoon ◽  
Alec Kanyuck ◽  
Satyandra K. Gupta

Additive manufacturing (AM) technologies have been widely used to fabricate 3D objects quickly and cost-effectively. However, building parts consisting of complex geometries with multiple curvatures can be a challenging process for the traditional AM system whose capability is restricted to planar-layered printing. Using 6-DOF industrial robots for AM overcomes this limitation by allowing materials to deposit on non-planar surfaces with desired tool orientation. In this paper, we present collision-free trajectory planning for printing using non-planar deposition. Trajectory parameters subject to surface curvature are properly controlled to avoid any collision with printing surface. We have implemented our approach by using a 6-DOF robot arm. The complex 3D structures with various curvatures were successfully fabricated, while avoiding any failures in joint movement, holding comparable build time and completing with a satisfactory surface finish.


2004 ◽  
Vol 23 (4) ◽  
pp. 703-715 ◽  
Author(s):  
T. Chettibi ◽  
H.E. Lehtihet ◽  
M. Haddad ◽  
S. Hanchi

Robotica ◽  
2018 ◽  
Vol 37 (3) ◽  
pp. 502-520 ◽  
Author(s):  
Xianxi Luo ◽  
Shuhui Li ◽  
Shubo Liu ◽  
Guoquan Liu

SUMMARYThis paper presents an optimal trajectory planning method for industrial robots. The paper specially focuses on the applications of path tracking. The problem is to plan the trajectory with a specified geometric path, while allowing the position and orientation of the path to be arbitrarily selected within the specific ranges. The special contributions of the paper include (1) an optimal path tracking formulation focusing on the least time and energy consumption without violating the kinematic constraints, (2) a special mechanism to discretize a prescribed path integration for segment interpolation to fulfill the optimization requirements of a task with its constraints, (3) a novel genetic algorithm (GA) optimization approach that transforms a target path to be tracked as a curve with optimal translation and orientation with respect to the world Cartesian coordinate frame, (4) an integration of the interval analysis, piecewise planning and GA algorithm to overcome the challenges for solving the special trajectory planning and path tracking optimization problem. Simulation study shows that it is an insufficient condition to define a trajectory just based on the consideration that each point on the trajectory should be reachable. Simulation results also demonstrate that the optimal trajectory for a path tracking problem can be obtained effectively and efficiently using the proposed method. The proposed method has the properties of broad adaptability, high feasibility and capability to achieve global optimization.


CIRP Annals ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 511-514 ◽  
Author(s):  
Y. Mizugaki ◽  
H. Hiraoka ◽  
F. Kimura ◽  
T. Sata

Robotica ◽  
2014 ◽  
Vol 33 (3) ◽  
pp. 669-683 ◽  
Author(s):  
Fares J. Abu-Dakka ◽  
Francisco J. Valero ◽  
Jose Luis Suñer ◽  
Vicente Mata

SUMMARYThis paper presents a new genetic algorithm methodology to solve the trajectory planning problem. This methodology can obtain smooth trajectories for industrial robots in complex environments using a direct method. The algorithm simultaneously creates a collision-free trajectory between initial and final configurations as the robot moves. The presented method deals with the uncertainties associated with the unknown kinematic properties of intermediate via points since they are generated as the algorithm evolves looking for the solution. Additionally, the objective of this algorithm is to minimize the trajectory time, which guides the robot motion. The method has been applied successfully to the PUMA 560 robotic system. Four operational parameters (execution time, computational time, end-effector distance traveled, and significant points distance traveled) have been computed to study and analyze the algorithm efficiency. The experimental results show that the proposed optimization algorithm for the trajectory planning problem of an industrial robot is feasible.


1986 ◽  
Vol 108 (3) ◽  
pp. 213-218 ◽  
Author(s):  
B. Benhabib ◽  
A. A. Goldenberg ◽  
R. G. Fenton

The paper addresses the problem of end effector trajectory planning and control of seven degrees of freedom (DOF) kinematically redundant robots. An off-line optimal continuous path planning method is developed for on-line control at joint level. The specified end effector path is approximated by a set of location nodes selected on the desired path. The motion control of the robot is provided by cubic polynomial interpolation at joint level. The proposed approach to trajectory planning of kinematically redundant robots consists of obtaining an optimal set of nodes which guarantees minimum deviation from the desired Cartesian path. The redundant DOF of the robot is used as a constrained variable in the optimization search. The method is illustrated in an example.


Sign in / Sign up

Export Citation Format

Share Document