Das logistische Regressionsmodell
ZusammenfassungDas lineare Regressionsmodell wird zu Kapitelbeginn als zweistufiges Modell neu interpretiert. Darauf aufbauend wird das logistische Regressionsmodell äquivalent als Modell für binäre Zielgrößen eingeführt. Dabei wird gezeigt, dass die logistische Regression ein Spezialfall der verallgemeinerten linearen Modelle (GLM) ist. Als wichtige Komponenten solcher Modelle werden Verteilung, Erwartungswert, linearer Prädiktor und Linkfunktion besprochen. Als Alternative zu dieser Herangehensweise wird die logistische Regression als latentes Variablenmodell vorgestellt. Anschließend wird die Interpretation der Modellparameter auf der Skala der Log-Odds, Odds und Wahrscheinlichkeit ausführlich besprochen. Den Abschluss bildet ein kurzer Ausblick auf Modelle mit mehreren Variablen und Methoden der Parameterschätzung bzw. Inferenz.