Adaptation of Desert Plants

Author(s):  
Kamal H. Batanouny
Keyword(s):  
2011 ◽  
Vol 35 (9) ◽  
pp. 893-905 ◽  
Author(s):  
Xin-Jun ZHENG ◽  
Song LI ◽  
Yan LI

Oecologia ◽  
2003 ◽  
Vol 136 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Susanne Schwinning ◽  
Benjamin I. Starr ◽  
James R. Ehleringer

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 709
Author(s):  
Gwendolyn K. Kirschner ◽  
Ting Ting Xiao ◽  
Ikram Blilou

Plants, as sessile organisms, have evolved a remarkable developmental plasticity to cope with their changing environment. When growing in hostile desert conditions, plants have to grow and thrive in heat and drought. This review discusses how desert plants have adapted their root system architecture (RSA) to cope with scarce water availability and poor nutrient availability in the desert soil. First, we describe how some species can survive by developing deep tap roots to access the groundwater while others produce shallow roots to exploit the short rain seasons and unpredictable rainfalls. Then, we discuss how desert plants have evolved unique developmental programs like having determinate meristems in the case of cacti while forming a branched and compact root system that allows efficient water uptake during wet periods. The remote germination mechanism in date palms is another example of developmental adaptation to survive in the dry and hot desert surface. Date palms have also designed non-gravitropic secondary roots, termed pneumatophores, to maximize water and nutrient uptake. Next, we highlight the distinct anatomical features developed by desert species in response to drought like narrow vessels, high tissue suberization, and air spaces within the root cortex tissue. Finally, we discuss the beneficial impact of the microbiome in promoting root growth in desert conditions and how these characteristics can be exploited to engineer resilient crops with a greater ability to deal with salinity induced by irrigation and with the increasing drought caused by global warming.


2012 ◽  
Vol 367 (1606) ◽  
pp. 3100-3114 ◽  
Author(s):  
Roberto Salguero-Gómez ◽  
Wolfgang Siewert ◽  
Brenda B. Casper ◽  
Katja Tielbörger

Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages . Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera . We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera . Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought.


Mycologia ◽  
1947 ◽  
Vol 39 (2) ◽  
pp. 210 ◽  
Author(s):  
Ross W. Davidson ◽  
James L. Mielke
Keyword(s):  

1997 ◽  
Vol 85 (5) ◽  
pp. 735
Author(s):  
R. M. M. Crawford ◽  
A. C. Gibson

1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.


Sign in / Sign up

Export Citation Format

Share Document