Vesicular–arbuscular endomycorrhizal associations of some desert plants of Baja California

1981 ◽  
Vol 59 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Sharon L. Rose

Endemic plants of the Sonoran Desert of Baja California were sampled for mycorrhizal associations. Eight of the 10 plant species examined were colonized by vesicular–arbuscular (VA) mycorrhizal fungi. Soil sievings revealed chlamydospores of three VA mycorrhizal Glomus spp.; G. microcarpus, G. fasciculatus, and G. macrocarpus. At the time of sampling, the populations of VA fungal spores in the soil were low, with one to five chlamydospores per 100 g soil sample.

1980 ◽  
Vol 58 (13) ◽  
pp. 1449-1454 ◽  
Author(s):  
Sharon L. Rose

Flowering plants that fix atmospheric nitrogen in actinomycete-induced nodules were sampled for mycorrhizal associates. Twenty-five species from seven families (Betulaceae, Casuarinaceae, Myricaceae, Rhamnaceae, Rosaceae, Elaeagnaceae, and Datiscaceae) were examined. Samples included were from the United States, Japan, and England.Both mycorrhizae and actinomycete-induced nitrogen-fixing nodules were present on: (i) four species of Alnus, (ii) two species of Casuarina, (iii) eight species of Ceanothus, (iv) four species of Myrica, (v) and one species each of Shepherdia, Hippophae, Cercocarpus, Dryas, Purshia, Comptonia, and Datisca. Soil sieving revealed species of the following genera of vesicular–arbuscular (VA) mycorrhizal fungi: Gigaspora, Glomus, Acaulospora, Entrophospora, and three undescribed taxa soon to be described. Spores of species in the first three genera of fungi were found most frequently from soil sievings. The VA mycorrhizal fungi exhibited distinct distributional patterns when associated with nonleguminous nitrogen-fixing hosts in different habitats. The ectomycorrhizae were not characterized.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Two species of vesicular-arbuscular (VA) mycorrhizal fungi differed in their ability to infect subterranean clover roots when soil pH was changed by liming. In a glasshouse experiment, Glomus fasciculatum infected extensively at each of four levels of soil pH (range 5.3-7.5). Glomus sp. (WUM 16) only infected extensively at the highest pH level. Liming the soil depressed plant growth, but this effect was almost entirely overcome by inoculation with G. fasciculatum. In the second experiment, Glomus sp. (WUM 16) failed to spread from existing infection within roots of subterranean clover when soil pH was 5.3 or lower. The lack of spread of infection was associated with an inability of hyphae of this fungus to grow in the soil used unless it was limed to give a pH at least greater than 5.3.


1985 ◽  
Vol 15 (6) ◽  
pp. 1061-1064 ◽  
Author(s):  
Paul P. Kormanik

Sweetgum seedlings with vesicular–arbuscular mycorrhizae formed by Glomusetunicatum or Glomusdeserticola in nursery soil with 30 ppm available phosphorus (P) and nonmycorrhizal seedlings grown in nursery soil with 800 ppm available P were outplanted and whole trees were excavated periodically over the next 5 years in the plantation to follow mycorrhizal development. Four months after outplanting, roots of all initially nonmycorrhizal seedlings had formed vesicular–arbuscular mycorrhizae and the degree of root colonization was comparable to that of initially vesicular–arbuscular mycorrhizal seedlings. New feeder roots did not develop on seedlings of any treatment until almost 5 months after planting. By the end of the first growing season and for the remainder of the study, vesicular–arbuscular mycorrhizae development was approximately the same on all seedlings. The proportion of feeder roots colonized by vesicular–arbuscular mycorrhizal fungi stabilized at 65 to 70%; approximately 56% of the cortical tissues of all feeder roots were colonized with arbuscles, vesicles, and hyphae. Periodic assays of the soil in the plantation showed that vesicular–arbuscular mycorrhizal fungal spores gradually declined from an initial high of 3600 spores to 620 spores per 100-cm3 soil sample after 5 years. This decline was probably caused by crown closure of the sweetgum trees which gradually suppressed understory vegetation.


1981 ◽  
Vol 59 (1) ◽  
pp. 34-39 ◽  
Author(s):  
S. L. Rose ◽  
C. T. Youngberg

Symbiotic associations were established between nitrogen-fixing nonleguminous (actinorrhizal) snowbrush (Ceanothus velutinus Dougl.) seedlings and two categories of microorganisms: vesicular–arbuscular (VA) mycorrhizal fungi and a filamentous actinomycete capable of inducing nodule formation. The actinomycete is housed in nodules where fixation of atmospheric dinitrogen occurs and is made available to the host plant; the mycorrhizal fungus is both inter- and intra-cellular within the root tissue and may be found within the nodules. The two major nutrients, N and P, are made available and can be supplied to the host plant by these two symbiotic microorganisms. The root system of snowbrush seedlings was dually colonized by VA mycorrhizal fungi and a nitrogen-fixing actinomycete and the possibility of a direct interaction between the endophytes in the symbioses was investigated. Dually infected plants showed increases in total dry weight of shoots and roots, number of nodules, weight of nodular tissue, as well as higher levels of N, Ca2+, and P, and an increase in nitrogenase activity as measured by acetylene reduction.


1979 ◽  
Vol 9 (2) ◽  
pp. 218-223 ◽  
Author(s):  
R. C. Schultz ◽  
P. P. Kormanik ◽  
W. C. Bryan ◽  
G. H. Brister

Seedlings of eight half-sib sweetgum (Liquidambarstyraciflua L.) families were grown for 6 months in a fumigated soil mixture, with or without inoculum from a mixture of Glomusmosseae and Glomusetunicatus fungi, at levels of 140, 280, 560, and 1120 kg/ha of 10–10–10 fertilizer. All seedlings received three additions of 187 kg/ha of N during the growing season. Inoculated seedlings had significantly greater biomass, height, and stem diameters at each fertilizer level than nonmycorrhizal control seedlings. Significant differences in growth occurred between families in mycorrhizal plants. However, fertilizer did not significantly affect growth or nutrient uptake of the seedlings. Inoculation with VA mycorrhizal fungi did not increase N, P, K, or Mg concentrations in the leaves, stems, or roots. Leaves of VA mycorrhizal seedlings had higher concentrations of calcium but stems and roots had lower concentrations of this element than the nonmycorrhizal seedlings. Seedlings with endomycorrhizae contained higher absolute quantities of each nutrient simply because of their greater biomass. The results suggest that the role of VA mycorrhizal fungi in the initial growth of sweetgum seedlings may be the result of physiological stimuli other than increased nutrient uptake.


1983 ◽  
Vol 61 (8) ◽  
pp. 2140-2146 ◽  
Author(s):  
B. A. Daniels Hetrick ◽  
J. Bloom

More vesicular–arbuscular mycorrhizal (VAM) fungal species and significantly more fungal spores were recovered from undisturbed prairie soils than four winter wheat field soils in Kansas through the 1980–1981 growing season. Two previously undescribed sporocarpic species of Endogonaceae were found in prairie samples but have not been successfully established in pot culture, leaving the genus to which they belong unclear. Though variable, 11–50% VAM root colonization was evident in all prairie grass roots sampled throughout the year. In contrast, no identifiable VAM root colonization was evident in wheat until May after flowering when 27% root colonization was observed. During the 1981–1982 growing season, roots of two other wheat fields were sampled with similar results. No colonization occurred until May when 8% root colonization was evident. The possible influence of such low levels of root colonization occurring quite late in the growing season of winter wheat is discussed.


1987 ◽  
Vol 38 (4) ◽  
pp. 707 ◽  
Author(s):  
MA Scheltema ◽  
LK Abbott ◽  
AD Robson

The seasonal variation in the rate and extent of formation of mycorrhizas in pasture soils from two sites in south-west Australia was examined. Undisturbed soil cores were taken on eight occasions throughout the year, sown with Trifolium subterraneum L. and maintained in a glasshouse. At each collection time the extent of formation of mycorrhizas was measured 3 and 6 weeks after sowing.There was no seasonal variation in the extent of mycorrhizas formed in undisturbed soil cores at one site, hut at the other site the extent of mycorrhizas decreased over time. The rate of formation of mycorrhizas was most rapid when cores were collected immediately after the opening rains of the season.Similar species of fungi were present at both sites; however, the rate and extent of infection formed by each species differed between the sites. At both sites the infectivity of A. laevis and fine endophyte decreased throughout the winter months, but the infectivity of Glomus spp. did not change. Neither the total spore number nor an estimate of the number of infective propagules reflected the infectivity of the total population of VA mycorrhizal fungi measured simultaneously at the two sites.


1983 ◽  
Vol 34 (6) ◽  
pp. 741 ◽  
Author(s):  
LK Abbott ◽  
AD Robson ◽  
IR Hall

Two species of vesicular arbuscular (VA) mycorrhizal fungi were introduced into agricultural soils at four field sites. Three sites were chosen, on the basis of a previous survey, to give a range in the expected extent and rate of mycorrhizal formation by the indigenous fungi. The fourth site had recently been cleared of natural vegetation and ploughed. The success of inoculation with Glomus fasciculatum and G. monosporum was measured by estimating the extent of mycorrhizas formed by the inoculant fungi and by recording growth of subterranean clover. The effects of inoculating with these two mycorrhizal fungi on the development of mycorrhizas formed by the indigenous fungi were also followed in detail. At two sites, infection by G. fasciculatum was increased in the plots where this species was added in the inoculum. Growth was temporarily enhanced after inoculation with G. fasciculatum at one of these sites. This corresponded with a temporary increase in the percentage of root length infected as a result of inoculation. Plants grown at the two sites where G. fasciculatum became established had a slower rate of development of infection by the indigenous VA mycorrhizal fungi compared with that formed by the indigenous species at the other two sites.


Sign in / Sign up

Export Citation Format

Share Document