Photoswitching of Intramolecular Magnetic Interaction Using Photochromic Compounds

Author(s):  
Kenji Matsuda ◽  
Masahiro Irie
Author(s):  
Alfred Baltz

As part of a program to develop iron particles for next generation recording disk medium, their structural properties were investigated using transmission electron microscopy and electron diffraction. Iron particles are a more desirable recording medium than iron oxide, the most widely used material in disk manufacturing, because they offer a higher magnetic output and a higher coercive force. The particles were prepared by a method described elsewhere. Because of their strong magnetic interaction, a method had to be developed to separate the particles on the electron microscope grids.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-2065-C8-2066
Author(s):  
M. Haag ◽  
F. Heller ◽  
R. Allenspach

2021 ◽  
Vol 7 (7) ◽  
pp. 99
Author(s):  
Linh Trinh ◽  
Eric Rivière ◽  
Sandra Mazerat ◽  
Laure Catala ◽  
Talal Mallah

The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consistent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two compounds, even though the objects have a size that place them in the superparamagnetic regime.


Author(s):  
Kentaro Higashi ◽  
Masayuki Ochi ◽  
Yusuke Nambu ◽  
Takafumi Yamamoto ◽  
Taito Murakami ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chloe S. Coates ◽  
Mia Baise ◽  
Adrian Schmutzler ◽  
Arkadiy Simonov ◽  
Joshua W. Makepeace ◽  
...  

AbstractSpin-ices are frustrated magnets that support a particularly rich variety of emergent physics. Typically, it is the interplay of magnetic dipole interactions, spin anisotropy, and geometric frustration on the pyrochlore lattice that drives spin-ice formation. The relevant physics occurs at temperatures commensurate with the magnetic interaction strength, which for most systems is 1–5 K. Here, we show that non-magnetic cadmium cyanide, Cd(CN)2, exhibits analogous behaviour to magnetic spin-ices, but does so on a temperature scale that is nearly two orders of magnitude greater. The electric dipole moments of cyanide ions in Cd(CN)2 assume the role of magnetic pseudospins, with the difference in energy scale reflecting the increased strength of electric vs magnetic dipolar interactions. As a result, spin-ice physics influences the structural behaviour of Cd(CN)2 even at room temperature.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Chuangtang Wang ◽  
Yongmin Liu

Abstract The interaction between ultrafast lasers and magnetic materials is an appealing topic. It not only involves interesting fundamental questions that remain inconclusive and hence need further investigation, but also has the potential to revolutionize data storage technologies because such an opto-magnetic interaction provides an ultrafast and energy-efficient means to control magnetization. Fruitful progress has been made in this area over the past quarter century. In this paper, we review the state-of-the-art experimental and theoretical studies on magnetization dynamics and switching in ferromagnetic materials that are induced by ultrafast lasers. We start by describing the physical mechanisms of ultrafast demagnetization based on different experimental observations and theoretical methods. Both the spin-flip scattering theory and the superdiffusive spin transport model will be discussed in detail. Then, we will discuss laser-induced torques and resultant magnetization dynamics in ferromagnetic materials. Recent developments of all-optical switching (AOS) of ferromagnetic materials towards ultrafast magnetic storage and memory will also be reviewed, followed by the perspectives on the challenges and future directions in this emerging area.


Sign in / Sign up

Export Citation Format

Share Document