Compensatory mechanisms for cardiac dysfunction in myocardial infarction

1991 ◽  
pp. 159-165
Author(s):  
G. Ertl ◽  
P. Gaudron ◽  
C. Eilles ◽  
W. Schorb ◽  
K. Kochsiek
2021 ◽  
Vol 22 (8) ◽  
pp. 4110
Author(s):  
Gerhild Euler ◽  
Jens Kockskämper ◽  
Rainer Schulz ◽  
Mariana S. Parahuleva

Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target.


2021 ◽  
Vol 8 (2) ◽  
pp. 22
Author(s):  
Rashid Mir ◽  
Imadeldin Elfaki ◽  
Naina Khullar ◽  
Ajaz Ahmad Waza ◽  
Chandan Jha ◽  
...  

Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.


2005 ◽  
Vol 19 (4) ◽  
pp. 251-259 ◽  
Author(s):  
Corinne Berthonneche ◽  
Thierry Sulpice ◽  
Stéphane Tanguy ◽  
Stephen O’Connor ◽  
Jean-Marc Herbert ◽  
...  

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hidetoshi Masumoto ◽  
Tadashi Ikeda ◽  
Tatsuya Shimizu ◽  
Teruo Okano ◽  
Ryuzo Sakata ◽  
...  

BACKGROUNDS: To realize cardiac regeneration with human induced pluripotent stem cells (hiPSCs), efficient differentiation from hiPSCs to defined cardiac cell populations (cardiomyocytes [CMs]/ endothelial cells [ECs]/ vascular mural cells [MCs]), and transplantation technique for fair engraftment are required. Recently, we reported that mouse ES cell-derived cardiac tissue sheet transplantation to rat myocardial infarction (MI) model ameliorated cardiac function after MI (Stem Cells, in press). Here we tried to extend this technique to hiPSCs. METHODS & RESULTS: We have reported an efficient cardiomyocyte differentiation protocol based on a monolayer culture (PLoS One, 2011), in which cardiac troponin-T (cTnT)-positive CMs robustly appeared with 50-80% efficiency. In this study, we further modified the protocol to induce vascular cells (ECs/MCs) together with CMs by vascular endothelial cell growth factor supplementation, resulted in proportional differentiation of cTnT+-CMs (62.7±11.7% of total cells), VE-cadherin+-ECs (7.8±4.9%) and PDGFRb+-MCs (18.2±11.0%) at differentiation day 15 (n=12). Then, these cells were transferred onto temperature-responsive culture dishes (UpCell dishes; CellSeed, Tokyo, Japan) to form cardiac tissue sheets including defined cardiac populations. After 4 days of culture, we successfully collected self-pulsating cardiac tissue sheets with 7.0×10 5 ±2.3 (n=12) of cells consisted of CMs (46.9±15.9% of total cells), ECs (4.1±3.7%), and MCs (22.5±15.7%). Three-layered hiPSC-derived cardiac sheets were transplanted to a MI model of athymic rat heart one week after MI. In transplantation group, echocardiogram showed a significant improvement of systolic function of left ventricle (fractional shortening: 22.6±5.0 vs 36.5±8.0%, p<0.001, n=20) and a decrease in akinetic length (20.8±9.7 vs 2.5±7.7%, p<0.001, n=20) (pre-treatment vs 4weeks after transplantation). We also succeeded in generation of larger sheets (1.6 inch diameter) with the same method. CONCLUTIONS: Transplantation of hiPSC-derived cardiac tissue sheets significantly ameliorates cardiac dysfunction after MI. Thus, we developed a valuable technological basis for hiPSC-based cardiac cell therapy.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Fabio N Gava ◽  
Alexandre A da Silva ◽  
John E Hall ◽  
Jussara M do Carmo

Sign in / Sign up

Export Citation Format

Share Document