Steering and Communication: Nervous System and Sensory Organs

2013 ◽  
pp. 71-101 ◽  
Author(s):  
Josef Finsterer ◽  
Hanna Schöpper ◽  
Sabine Breit
2002 ◽  
Author(s):  
Werner Kahle ◽  
Michael Frotscher

Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 733-752 ◽  
Author(s):  
Salim Abdelilah-Seyfried ◽  
Yee-Ming Chan ◽  
Chaoyang Zeng ◽  
Nicholas J Justice ◽  
Susan Younger-Shepherd ◽  
...  

Abstract The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rørth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3735-3743 ◽  
Author(s):  
V. Van De Bor ◽  
R. Walther ◽  
A. Giangrande

In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 441-450 ◽  
Author(s):  
K. Blochlinger ◽  
L.Y. Jan ◽  
Y.N. Jan

The cut locus is both necessary and sufficient to specify the identity of a class of sensory organs in Drosophila embryos. It is also expressed in and required for the development of a number of other embryonic tissues, such as the central nervous system, the Malpighian tubules and the tracheal system. We here describe the expression of cut in the precursors of adult sensory organs. We also show that cut is expressed in cells of the prospective wing margin and correlate the wing margin phenotype caused by two cut mutations with altered cut expression patterns. Finally, we observe cut-expressing cells in other adult tissues, including Malpighian tubules, muscles, the central nervous system and ovarian follicle cells.


Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 35-47 ◽  
Author(s):  
J.G. Heuer ◽  
T.C. Kaufman

The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral mesoderm (Tremml, G. and Bienz, M. (1989), EMBO J. 8, 2677–2685). We report here the roles of homeotic genes in establishing the spatial patterns of sensory organs in the embryonic PNS. The PNS was examined in embryos homozygous for mutations in the homeotic genes Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) with antibodies that label specific subsets of sensory organs. Our results suggest that the homeotic genes have specific roles in establishing the correct spatial patterns of sensory organs in their normal domains of expression. In addition, we also report the effects of ectopic expression of the homeotic genes labial (lab), Deformed (Dfd), Scr, Antp or Ubx on the normal development of sensory organs in the embryonic PNS. Interestingly, while previous studies have concluded that ectopic expression of the homeotic genes Dfd, Scr and Antp has no effect on the segmental identity of the abdominal segments, our results demonstrate that this is not true. We show that ectopic expression of these genes does result in the disruption of the developing PNS in the abdomen. Our results are suggestive of a role for the homeotic gene products in regulating genes which are necessary for generating sensory progenitor cells in the developing PNS.


2002 ◽  
Vol 223 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Johannes R. Rajarao ◽  
Victor A. Canfield ◽  
Benjamin Loppin ◽  
Bernard Thisse ◽  
Christine Thisse ◽  
...  

2008 ◽  
Vol 237 (3) ◽  
pp. 788-799 ◽  
Author(s):  
Verena Hoppmann ◽  
Jun J. Wu ◽  
Anne Mette Søviknes ◽  
Jon Vidar Helvik ◽  
Thomas S. Becker

Sign in / Sign up

Export Citation Format

Share Document