Testing of Cerebral Autoregulation in Head Injury by Waveform Analysis of Blood Flow Velocity and Cerebral Perfusion Pressure

1994 ◽  
pp. 468-471 ◽  
Author(s):  
Marek Czosnyka ◽  
E. Guazzo ◽  
V. Iyer ◽  
P. Kirkpatrick ◽  
P. Smielewski ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245291
Author(s):  
Alexander Ruesch ◽  
Deepshikha Acharya ◽  
Samantha Schmitt ◽  
Jason Yang ◽  
Matthew A. Smith ◽  
...  

The brain’s ability to maintain cerebral blood flow approximately constant despite cerebral perfusion pressure changes is known as cerebral autoregulation (CA) and is governed by vasoconstriction and vasodilation. Cerebral perfusion pressure is defined as the pressure gradient between arterial blood pressure and intracranial pressure. Measuring CA is a challenging task and has created a variety of evaluation methods, which are often categorized as static and dynamic CA assessments. Because CA is quantified as the performance of a regulatory system and no physical ground truth can be measured, conflicting results are reported. The conflict further arises from a lack of healthy volunteer data with respect to cerebral perfusion pressure measurements and the variety of diseases in which CA ability is impaired, including stroke, traumatic brain injury and hydrocephalus. To overcome these differences, we present a healthy non-human primate model in which we can control the ability to autoregulate blood flow through the type of anesthesia (isoflurane vs fentanyl). We show how three different assessment methods can be used to measure CA impairment, and how static and dynamic autoregulation compare under challenges in intracranial pressure and blood pressure. We reconstructed Lassen’s curve for two groups of anesthesia, where only the fentanyl anesthetized group yielded the canonical shape. Cerebral perfusion pressure allowed for the best distinction between the fentanyl and isoflurane anesthetized groups. The autoregulatory response time to induced oscillations in intracranial pressure and blood pressure, measured as the phase lag between intracranial pressure and blood pressure, was able to determine autoregulatory impairment in agreement with static autoregulation. Static and dynamic CA both show impairment in high dose isoflurane anesthesia, while low isoflurane in combination with fentanyl anesthesia maintains CA, offering a repeatable animal model for CA studies.


Neurosurgery ◽  
1989 ◽  
Vol 25 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Howard H. Kaufman ◽  
Fred H. Geisler ◽  
Thomas Kopitnik ◽  
William Higgins ◽  
Dan Stewart

Abstract Patients treated with barbiturate coma for elevated intracranial pressure after head injury may suffer brain death. Since such patients have an iatrogenically induced absence of neurological function, brain death cannot be diagnosed clinically. Furthermore, as demonstrated by two of our patients, monitoring of intracranial pressure, even in the face of brain death, may show a low intracranial pressure and an intracranial pulse, suggesting the presence of adequate cerebral perfusion pressure and, therefore, brain viability. Under these circumstances. however, significant intracranial blood flow may be absent. Therefore, we suggest that a patient in barbiturate coma should undergo serial blood flow studies. even when the intracranial pressure is low and an intracranial pulse is present. to determine whether brain death has occurred.


2015 ◽  
Vol 35 (9) ◽  
pp. 1470-1477 ◽  
Author(s):  
Frank Grüne ◽  
Stephan Kazmaier ◽  
Robert J Stolker ◽  
Gerhard H Visser ◽  
Andreas Weyland

In addition to cerebrovascular resistance (CVR) zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe) and the resistance area product (RAP) are supplemental determinants of cerebral blood flow (CBF). Until now, the interrelationship of PaCO2 -induced changes in CBF, CVR, CPPe, ZFP, and RAP is not fully understood. In a controlled crossover trial, we investigated 10 anesthetized patients aiming at PaCO2 levels of 30, 37, 43, and 50 mm Hg. Cerebral blood flow was measured with a modified Kety-Schmidt-technique. Zero flow pressure and RAP was estimated by linear regression analysis of pressure–flow velocity relationships of the middle cerebral artery. Effective cerebral perfusion pressure was calculated as the difference between mean arterial pressure and ZFP, CVR as the ratio CPPe/CBF. Statistical analysis was performed by one-way RM-ANOVA. When comparing hypocapnia with hypercapnia, CBF showed a significant exponential reduction by 55% and mean VMCA by 41%. Effective cerebral perfusion pressure linearly decreased by 17% while ZFP increased from 14 to 29 mm Hg. Cerebrovascular resistance increased by 96% and RAP by 39%; despite these concordant changes in mean CVR and Doppler-derived RAP correlation between these variables was weak ( r = 0.43). In conclusion, under general anesthesia hypocapnia-induced reduction in CBF is caused by both an increase in CVR and a decrease in CPPe, as a consequence of an increase in ZFP.


1985 ◽  
Vol 63 (1) ◽  
pp. 43-48 ◽  
Author(s):  
A. David Mendelow ◽  
Graham M. Teasdale ◽  
Thomas Russell ◽  
John Flood ◽  
James Patterson ◽  
...  

✓ Patients with severe head injury frequently have evidence of elevated intracranial pressure (ICP) and ischemic neuronal damage at autopsy. Mannitol has been used clinically to reduce ICP with varying success, and it is possible that it is more effective in some types of head injury than in others. The aim of the present study was to determine the effect of mannitol on ICP, cerebral perfusion pressure (CPP), and cerebral blood flow (CBF) in patients with severe head injury, and to discover if these effects differed in different types of injury. Measurements of CPP, ICP, and CBF were made in 55 patients with severe head injury. In general, the resting level of CBF was higher in patients with diffuse injury (mean 50.2 ml/100 gm/min) than in those with focal injury (mean 39.8 ml/100 gm/min). Mannitol consistently reduced ICP and increased CPP and CBF by 10 to 20 minutes after infusion. The lowest flows (31.8 ml/100 gm/min) were recorded from the most damaged hemispheres of patients with focal injuries and elevated ICP. The baseline levels of flow did not correlate with ICP, CPP, Glasgow Coma Scale score, or outcome. Only four of the 55 patients had a CBF of less than 20 ml/100 gm/min in either or both hemispheres. The few low CBF's in this and other studies may reflect the steady-state conditions under which measurements are made in intensive care units, and that these patients have entered a phase of reperfusion.


1996 ◽  
Vol 138 (4) ◽  
pp. 425-434 ◽  
Author(s):  
J. Dings ◽  
J. Meixensberger ◽  
J. Amschler ◽  
B. Hamelbeck ◽  
K. Roosen

Sign in / Sign up

Export Citation Format

Share Document