scholarly journals Mitochondrial Activation and Nitric Oxide (NO) Release at Fertilization in Echinoderm Eggs

Author(s):  
Tatsuma Mohri ◽  
Keiichiro Kyozuka
Keyword(s):  
1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


RSC Advances ◽  
2014 ◽  
Vol 4 (57) ◽  
pp. 30129-30136 ◽  
Author(s):  
Rijun Gui ◽  
Ajun Wan ◽  
Yalei Zhang ◽  
Huili Li ◽  
Tingting Zhao

This article reported the synthesis of CMC–FA–RBS(CQD) nanospheres and studied their potential applications for NO release and fluorescence imaging.


2017 ◽  
Vol 5 (36) ◽  
pp. 7519-7528 ◽  
Author(s):  
Tuanwei Liu ◽  
Jingjing Hu ◽  
Xiaoye Ma ◽  
Bing Kong ◽  
Jilan Wang ◽  
...  

Tumor targeted hollow double-layered polymer nanoparticles (HDPNs) withS-nitrosothiols for nitric oxide (NO)-release as chemotherapy were described.


1998 ◽  
Vol 85 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Klaus Lewandowski ◽  
Thilo Busch ◽  
Hansjörg Lohbrunner ◽  
Susanne Rensing ◽  
Uwe Keske ◽  
...  

To investigate whether relevant levels of nasal nitric oxide (NO) are produced in the absence of paranasal sinuses, we studied 17 healthy baboons, mammals without any paranasal sinuses. The animals were anesthetized with ketamine hydrochloride and breathed spontaneously. While the baboons breathed through a face mask (mouths closed) connected to a respirator, NO concentrations in exhaled gas were sampled from the expiratory limb and analyzed by chemiluminescence. While the animals were breathing ambient air, nasal gas was sampled via a thin plastic tube and analyzed for NO concentrations by chemiluminescence. Mean NO concentration in the exhaled gas was 1.00 ± 0.59 parts/billion, and NO release was 4.28 ± 2.72 nl/min. A NO concentration of 4.79 ± 2.08 parts/billion was found in the nasal gas (NO release: 7.18 ± 3.13 nl/min). An age-dependent increase in nasal NO levels was not observed. Exhaled and nasal NO concentrations in baboons were markedly lower than in mammals with paranasal sinuses, suggesting that paranasal sinuses might be an anatomic requirement for production of relevant nasal NO levels.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2137-2146
Author(s):  
Amrita Sarkar ◽  
Subhendu Karmakar ◽  
Sudipta Bhattacharyya ◽  
Kallol Purkait ◽  
Arindam Mukherjee

Our work shows that NO release is a feasible pathway of action for aromatic and heterocyclic N-(2-chloroethyl)-N-nitrosoureas and faster NO release may not lead to higher cytotoxicity.


2016 ◽  
pp. S109-S118 ◽  
Author(s):  
K. K. CHAUDAGAR ◽  
C. VICZENCZOVA ◽  
B. SZEIFFOVA BACOVA ◽  
T. EGAN BENOVA ◽  
M. BARANCIK ◽  
...  

We aimed to explore the effects of melatonin and n-3 polyunsaturated fatty acids (PUFA) supplementation on plasma and aortic nitric oxide (NO) levels in isoproterenol (Iso) affected spontaneously hypertensive (SHR) and Wistar rats. Untreated control rats were compared with Iso injected (118 mg/kg, s.c.) rats, and Iso injected plus supplemented with melatonin (10 mg/kg, p.o.) or PUFA (1.68 g/kg, p.o.) for two months. Plasma and aortic basal, L-NAME inhibited, adrenaline and acetylcholine stimulated NO were determined using Griess method. Plasma NO levels were lower in SHR versus Wistar rats. Iso decreased NO in Wistar while not in SHR. PUFA but not melatonin intake of Iso treated SHR increased plasma NO along with a decrease in systolic blood pressure. Basal aortic NO level was higher in SHR than Wistar rats and not altered by Iso. Intake of melatonin increased but PUFA decreased basal NO levels in Wistar+Iso and did not affect in SHR+Iso rats. Acetylcholine and adrenaline induced aortic NO release was significantly increased in Wistar+Iso but not SHR+Iso group. Melatonin intake increased Ach induced aortic NO in Wistar+Iso and SHR+Iso groups, whereas there was no effect of PUFA intake. Findings suggest that PUFA modulates plasma and melatonin aortic NO levels of isoproterenol affected rats in a strain-dependent manner.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wan-Ling Jiang ◽  
Hua-Jiang Wei ◽  
Zhou-Yi Guo ◽  
Yi-Rong Ni ◽  
Hong-Qin Yang ◽  
...  

Objective.The purpose of the study was to examine the effects of laser acupuncture (LA) at right Neiguan (RPC6)/left Neiguan (LPC6) acupoints on the releases of nitric oxide (NO) in the treated and contralateral/nontreated PC6, compared to the nonacupoint control area.Methods. 24 mW LA at RPC6, LPC6, and nonacupoint in 22 healthy subjects for 40 min: sterilized dialysis tube was taped to the nontreated PC6/nonacupoint during the treatment and immediately taped to the treated and nontreated PC6/nonacupoint after LA removal. NO-scavenging compound was injected into the tube for 40 min to absorb the molecular which was tested by spectrophotometry in a blinded fashion.Results. LA-induced NO releases over PC6 acupoints for the nontreated and treated sides all significantly increased after LA removal, but for the nontreated acupoints they did not change during LA stimulation. LA at RPC6 induced the more release of the NO at contralateral side than stimulating LPC6, but not on nonacupoints. The results suggest that LA-induced NO release over contralateral acupoint and NO release resulting from the lateralized specificity all are different and specific to the acupoint within different time course.Conclusions. LA-evoked NO release over acupoints could improve the neurogenic, endothelial activity of the vessel wall to further facilitate microcirculation.


Sign in / Sign up

Export Citation Format

Share Document