A critical evaluation of [ML(ONO)]n+ (M= Fe, Ru, Os) as nitric oxide precursor influenced by spin multiplicity and geometrical parameters (M-O-NO) for the NO release: A theoretical study

2021 ◽  
pp. 120584
Author(s):  
José Guadalupe Hernández ◽  
Pandiyan Thangarasu

One of efficiency indicators of grain grinders is grain granulometric composition. The basis of mixed fodder is crushed grain, the particles of which must have a leveled granulometric composition for subsequent mixing and obtaining a high-quality feed mixture. In agricultural production, hammer crushers are widely used, in which the destruction of grain occurs due to the impact of a hinged hammer. The main disadvantage of these crushers is that not the entire surface of the hammers is involved in grinding, thus reduces grinding process efficiency. A slightly different principle of material destruction is laid down in the basis of the proposed design of the shock-centrifugal grinder. Main work is performed by flat impact elements located on the rotor, which serve to accelerate crushed particles with subsequent impact of them on the bump elements. An important step in the design of new constructions of shock-centrifugal grinders is to determine size and location of the impact elements on the rotor, without which the grinding process is not possible. In the calculation method presented, the dependencies for determining the velocities and angles of a single particle flight from the surface of a flat impact element for its specified dimensions are proposed. Two variants of an impact element location on the rotor are considered and analyzed: radial and at an angle in the direction of rotor rotation. As a result of research carried out, it is noted that in the case of inclined position of an impact element on the rotor an increase in flight speed and flight angles change in crushed particles, which gives the opportunity to have a positive effect on grinding process.


1994 ◽  
Vol 267 (1) ◽  
pp. F190-F195 ◽  
Author(s):  
H. Tsukahara ◽  
Y. Krivenko ◽  
L. C. Moore ◽  
M. S. Goligorsky

It has been hypothesized that fluctuations of the ionic composition in the interstitium of juxtaglomerular apparatus (JGA) modulate the function of extraglomerular mesangial cells (MC), thereby participating in tubuloglomerular feedback (TGF) signal transmission. We examined the effects of isosmotic reductions in ambient sodium concentration ([Na+]) and [Cl-] on cytosolic calcium concentration ([Ca2+]i) in cultured rat MC. Rapid reduction of [Na+] or [Cl-] in the bath induced a concentration-dependent rise in [Ca2+]i. MC are much more sensitive to decreases in ambient [Cl-] than to [Na+]; a decrease in [Cl-] as small as 14 mM was sufficient to elicit a detectable [Ca2]i response. These observations suggest that MC can be readily stimulated by modest perturbations of extracellular [Cl-]. Next, we examined whether activation of MC by lowered ambient [Cl-] influences cellular nitric oxide (NO) production. Using an amperometric NO sensor, we found that a 13 mM decrease in ambient [Cl-] caused a rapid, Ca2+/calmodulin-dependent rise in NO release from MC. This response was not inhibitable by dexamethasone, indicating the involvement of the constitutive rather than the inducible type of NO synthase in MC. In addition, the NO release was blunted by indomethacin pretreatment, suggesting that a metabolite(s) of cyclooxygenase regulates the activation of NO synthase in MC. Our findings that small perturbations in external [Cl-] stimulate MC to release NO, a highly diffusible and rapidly acting vasodilator, provide a possible mechanism to explain the transmission of the signal for the TGF response within the JGA.


2003 ◽  
Vol 58 (12) ◽  
pp. 749-755
Author(s):  
Abdullah El-Alali ◽  
Ali A. Marashdeh ◽  
Salim M. Khalil

MINDO-Forces calculations have been performed with complete optimization of the geometries on stepwise fluorinated cyclopropanones and their enols. Increase in the number of fluorine atoms causes destabilization of cyclopropanone. Perfluorinated enol was found to be present in substantial concentration, as was mentioned in previous work. This is supported by calculations of Gibbs free energies and isodesmic reactions. Geometrical parameters, heats of formation, electron densities, dipole moments and orbital energies (HOMO-LUMO) are reported.


RSC Advances ◽  
2014 ◽  
Vol 4 (57) ◽  
pp. 30129-30136 ◽  
Author(s):  
Rijun Gui ◽  
Ajun Wan ◽  
Yalei Zhang ◽  
Huili Li ◽  
Tingting Zhao

This article reported the synthesis of CMC–FA–RBS(CQD) nanospheres and studied their potential applications for NO release and fluorescence imaging.


2017 ◽  
Vol 5 (36) ◽  
pp. 7519-7528 ◽  
Author(s):  
Tuanwei Liu ◽  
Jingjing Hu ◽  
Xiaoye Ma ◽  
Bing Kong ◽  
Jilan Wang ◽  
...  

Tumor targeted hollow double-layered polymer nanoparticles (HDPNs) withS-nitrosothiols for nitric oxide (NO)-release as chemotherapy were described.


2017 ◽  
Vol 106 (12) ◽  
pp. 3556-3563 ◽  
Author(s):  
Sayeed Hasan ◽  
Nicky Thomas ◽  
Benjamin Thierry ◽  
Clive A. Prestidge

1998 ◽  
Vol 85 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Klaus Lewandowski ◽  
Thilo Busch ◽  
Hansjörg Lohbrunner ◽  
Susanne Rensing ◽  
Uwe Keske ◽  
...  

To investigate whether relevant levels of nasal nitric oxide (NO) are produced in the absence of paranasal sinuses, we studied 17 healthy baboons, mammals without any paranasal sinuses. The animals were anesthetized with ketamine hydrochloride and breathed spontaneously. While the baboons breathed through a face mask (mouths closed) connected to a respirator, NO concentrations in exhaled gas were sampled from the expiratory limb and analyzed by chemiluminescence. While the animals were breathing ambient air, nasal gas was sampled via a thin plastic tube and analyzed for NO concentrations by chemiluminescence. Mean NO concentration in the exhaled gas was 1.00 ± 0.59 parts/billion, and NO release was 4.28 ± 2.72 nl/min. A NO concentration of 4.79 ± 2.08 parts/billion was found in the nasal gas (NO release: 7.18 ± 3.13 nl/min). An age-dependent increase in nasal NO levels was not observed. Exhaled and nasal NO concentrations in baboons were markedly lower than in mammals with paranasal sinuses, suggesting that paranasal sinuses might be an anatomic requirement for production of relevant nasal NO levels.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Sign in / Sign up

Export Citation Format

Share Document