Reconstruction of Elastic Fibers in Three-Dimensional Smooth Muscle Cells

Author(s):  
Utako Yokoyama ◽  
Yoshihiro Ishikawa
1966 ◽  
Vol 28 (1) ◽  
pp. 37-49 ◽  
Author(s):  
J. C. Thaemert

The muscularis externa of the intestinal wall of frogs was fixed in osmium tetroxide, embedded in Vestopal-W, serially sectioned for electron microscopy, and stained with uranyl acetate. A method to obtain individually mounted and properly positioned serial sections is described. The three-dimensional techniques used during the course of this investigation demonstrate that it is possible to examine carefully relatively large areas of tissue on individual serial sections with the electron microscope and subsequently to construct montages of electron micrographs of pertinent areas from each section. Several carefully rendered interrelationships of nerve processes and smooth muscle cells in three dimensions are exhibited and described. Recent studies of other neuro-effector relationships are discussed in relation to the present status of the nature and organization of the autonomic nervous system in visceral organs.


1994 ◽  
Vol 3 (6) ◽  
pp. 481-492 ◽  
Author(s):  
Keiichi Kanda ◽  
Takehisa Matsuda

The effect of tensile stress on the orientation and phenotype of arterial smooth muscle cells (SMCs) cultured in three-dimensional (3D) type I collagen gels was morphologically investigated. Ring-shaped hybrid tissues were prepared by thermal gelation of a cold mixed solution of type I collagen and SMCs derived from bovine aorta. The tissues were subjected to three different modes of tensile stress. They were floated (isotonic control), stretched isometrically (static stress) and periodically stretched and recoiled by 5% above and below the resting tissue length at 60 RPM frequency (dynamic stress). After incubation for up to four wk, the tissues were investigated under a light microscope (LM) and a transmission electron microscope (TEM). Hematoxylin and eosinstained LM samples revealed that, irrespective of static or dynamic stress loading, SMCs in stress-loaded tissues exhibited elongated bipolar spindle shape and were regularly oriented parallel to the direction of the strain, whereas those in isotonic control tissues were polygonal or spherical and had no preferential orientation. In Azan-stained samples, collagen fiber bundles in isotonic control tissues were somewhat retracted around the polygonal SMCs to form a random network. On the other hand, those in statically and dynamically stressed tissues were accumulated and prominently oriented parallel to the stretch direction. Ultrastructural investigation using a TEM showed that SMCs in control and statically stressed tissues were almost totally filled with synthetic organelles such as rough endoplasmic reticulums, free ribosomes, Golgi complexes and mitochondria, indicating that the cells remained in the synthetic phenotype. On the other hand, SMCs in dynamically stressed tissues had increased fractions of contractile apparatus, such as myofilaments, dense bodies and extracellular filamentous materials equivalent to basement membranes, that progressed with incubation time. These results indicate that periodic stretch, in concert with 3-D extracellular collagen matrices, play a significant role in the phenotypic modulation of SMCs from the synthetic to the contractile state, as well as cellular and biomolecular orientation.


2019 ◽  
Vol 7 (1) ◽  
pp. 347-361 ◽  
Author(s):  
Haishuang Lin ◽  
Qian Du ◽  
Qiang Li ◽  
Ou Wang ◽  
Zhanqi Wang ◽  
...  

3D thermoreversible PNIPAAm-PEG hydrogels are used for scalable production of human pluripotent stem cell-derived vascular smooth muscle cells.


2013 ◽  
Vol 116 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Sho Shinohara ◽  
Takanori Kihara ◽  
Shinji Sakai ◽  
Michiya Matsusaki ◽  
Mitsuru Akashi ◽  
...  

1975 ◽  
Vol 67 (3) ◽  
pp. 660-674 ◽  
Author(s):  
T N Wight ◽  
R Ross

Proteoglycans were identified and localized histochemically and ultrastructurally in normal and hyperplastic arterial intimas in nonhuman primates (Macaca nemestrina). These regions were consistently more alcianophilic than the adjacent medial layers and this alcianophilia was absent after treatment with glycosaminoglycan-degradative enzymes. Ultrastructurally, the intimal intercellular matrix consisted of numerous, irregularly shaped, 200-500-A diameter granules possessing 30--60-A diameter filamentous projections, and these granules were dispersed between collagen and elastic fibers. The granules exhibited a marked affinity for ruthenium red and were interconnected via their filamentous projections. The ruthenium red-positive granules were intimately associated with the plasma membrane of intimal smooth muscle cells and attached to collagen fibrils and elastic fibers. The matrix granules were completely removed after testicular hyaluronidase or chondroitinase ABC digestion but only partially removed after leech hyaluronidase treatment. These results suggest that the matrix granules contain some hyaluronic acid and one or more isomers of chondroitin sulfate. In addition to the large ruthenium red-positive matrix granules, a smaller class of ruthenium red-positive granule (100--200-A diameter) was present within the basement membranes beneath the endothelium and surrounding the smooth muscle cells. Ruthenium red also exhibited an affinity for the surface coat of the smooth muscle cells. The potential importance of proteoglycans in arterial intimal hyperplasia is discussed.


2004 ◽  
Vol 121 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Tsutomu Katsuyama ◽  
Kenichi Arai ◽  
Hiroyoshi Ota ◽  
Eiko Hidaka ◽  
Masayoshi Hayama ◽  
...  

Author(s):  
Y. Uehara ◽  
T. Komuro ◽  
J. Desaki

Although subcellular organization of vascular smooth muscle cells and pericytes have been described by a number of authors, the precise overall structure of these cells has not been revealed at the fine structural level.In order to extend our knowledge in understanding of vascular function, the present paper deals the three dimensional organization of these cells as studied with a transmission EM using serial sections and with a scanning EM using materials from which connective tissue elements are removed.For the reconstruction study, arterioles ranging in diameter from l0um to 25um are selected from the hamster skeletal muscle and the rat pancreas.Fig. 1. demonstrates an example of the reconstructed model of the arteriole smooth muscle cell. Here the muscle cell takes a spiral form which coils nearly twice around the endothelial column. The shape and disposition of the muscle cells gradually become to be irregular towards the capillary bed.


Sign in / Sign up

Export Citation Format

Share Document