Co-culture of smooth muscle cells and endothelial cells on three-dimensional bioprinted polycaprolactone scaffolds for cavernosal tissue engineering

2019 ◽  
pp. 1-6 ◽  
Author(s):  
Kyung-Jin Oh ◽  
Ho Song Yu ◽  
Jinju Park ◽  
Hyun-Suk Lee ◽  
Su A. Park ◽  
...  
2007 ◽  
Vol 1004 ◽  
Author(s):  
Shashi Murthy ◽  
Brian Plouffe ◽  
Milica Radisic

AbstractMicrofluidic cell separation systems have emerged as attractive alternatives to traditional techniques in recent years. These systems offer the advantages of being able to handle small sample volumes and at the same time achieve highly selective separation. Conventional separation techniques, including both fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), typically require a pre-processing incubation step to attach ligated tags (such as fluorescent dyes or magnetic beads) to cell surfaces prior to separation. These techniques are also constrained by infrastructure and high cost. Microfluidic devices with surface-immobilized adhesion molecules eliminate the need for pre-processing incubation and are a low cost alternative.We describe the selective adhesion of smooth muscle cells and endothelial cells in microfluidic devices coated with adhesion peptides. The device geometry is such that the shear stress varies linearly as a function of flow channel length, allowing simultaneous evaluation of the effects of surface chemistry and fluid shear on cell adhesion. The adhesion peptides, val-ala-pro-gly (VAPG) and arg-glu-asp-val (REDV), are known to bind selectively to smooth muscle cells and endothelial cells, respectively. These peptides were tethered to the device surface using silane chemistry and NHS-ester coupling. Cell adhesion was examined in a shear stress range of 1.3-4.0 dyn/cm2. Under these conditions, endothelial cells show significantly higher adhesion to REDV-coated devices compared to smooth muscle cells and fibroblasts. Correspondingly, smooth muscle cell adhesion in VAPG-coated devices is much greater than that of endothelial cells and fibroblasts. This selective binding behavior is also observed when mixed suspensions of the three cell types are flowed into both types of peptide-coated microfluidic devices. These results suggest that microfluidic devices coated with REDV and VAPG can be used as effective separation tools in various applications, such as tissue engineering. Specific examples of applications in cardiac and skin tissue engineering will be discussed.


Author(s):  
Valerie M. Merkle ◽  
Kaitlyn R. Ammann ◽  
Katrina J. DeCook ◽  
Phat L. Tran ◽  
Marvin J. Slepian ◽  
...  

Coaxial electrospinning is a novel technique that allows the fabrication of composite nanofibers in a core-shell structure. This technique can be used to optimize the biological properties of a natural polymer (i.e. gelatin) and the mechanical properties of a synthetic polymer (i.e. polyvinyl alcohol). In this study, we fabricated coaxial nanofibers of gelatin and polyvinyl alcohol (PVA) for use in cardiovascular tissue engineering. Cellular adhesion and proliferation of human umbilical endothelial cells (HUVEC) and smooth muscle cells (SMC) is determined on coaxial nanofibers fabricated from a 1:1 and 3:1 (gelatin:PVA volumetric flow rate ratios), as well as nanofibers composed solely of gelatin or PVA. In addition, cellular migration on the coaxial nanofibers, gelatin nanofibers, and PVA nanofibers is determined for both endothelial cells and smooth muscle cells.


2021 ◽  
Author(s):  
Qianheng Jin ◽  
Yi Fu ◽  
Guangliang Zhang ◽  
Lei Xu ◽  
Guangzhe Jin ◽  
...  

Abstract Background: Cardiovascular disease is responsible for a large number of deaths each year. Autologous vascular transplantation is still the best surgical intervention option, but the success rate is affected by many factors. Tissue engineering is a growing research area of great interest because it can produce bionic grafts to replace autologous tissue. Although many molding strategies have been tried, precellularization of small-diameter vascular grafts remains a research challenge. Here, a novel approach for fabricating bionic small-diameter vascular vessels with endothelial and smooth muscle cells is developed through combining nanofiber electrospinning and a specially-designed rotary bioprinter.Results: Combining and utilizing the advantages of nanofiber electrospinning and rotary printing, a tissue-engineered vascular tissue more suitable for biological transplantation is fabricated. Electrospun poly(ε-caprolactone) (PCL) provides good elasticity, and the electrospinning modification is beneficial for adhesion and functionalization of endothelial cells. A flat monolayer on the surface of PCL is formed after 7 days cultivation. Modification of the traditional three-dimensional (3D) bioprinter to increase rotation of the central axis used dual motors rotating clockwise and anticlockwise at the same speed increase stability during the printing process. This allowed a uniform dense methacrylated gelatin (GelMA) structure containing smooth muscle cells to be bioprinted with the cells are arranged linearly along the horizontal axis of rotation. Perfused with umbilical vein endothelial cells, a monolayer endothelial structure is formed. The two type cells maintain viability and proliferation in the structure during the process of cultivation. In addition, the bionic structureis superior to the natural blood vessel in anti-burst pressure and suture retention strength.Conclusion: By combining nanofiber electrospinning and modified rotary bioprinter, we successfully formed a small-diameter bionic vascular vessel with smooth muscle cells and endothelial cells. This method takes advantages of two advanced technologies and provides a new strategy for the development of bionic blood vascular tissue.


2005 ◽  
Vol 14 (7) ◽  
pp. 481-488 ◽  
Author(s):  
Amy Solan ◽  
Laura Niklason

Tissue engineering of blood vessels offers a potential new therapy for patients with vascular occlusive disease. In addition, tissue engineering technologies offer the opportunity to study the biology of vascular cells in a biomimetic, three-dimensional environment. A model for vascular tissue engineering was used to study the effects of vascular cell age on extracellular matrix (ECM) deposition, cellular mitosis, and protein synthesis under controlled conditions in vitro. Blood vessels were grown using a three-dimensional polyglycolic acid (PGA) mesh that was seeded with either infant or adult porcine vascular smooth muscle cells. Mechanical forces in the form of pulsatile radial distension were applied for the duration of the 7-week growth period. Overall, infant cells exhibited higher levels of cellular proliferation, ECM deposition, and remodeling activity than cells derived from adult animals. In addition, vessels cultured from infant cells had enhanced physical properties compared to vessels cultured from adult cells. The differentiation state of the smooth muscle cells in the infant and adult constructs was unchanged from the native state. However, the levels of immature pro-collagen, although undetectable in the vessels grown from adult cells, were similar in native vessels and in vessels grown with infant cells. These studies have important implications for the study of aging and vascular disease and remodeling, as well as for the field of tissue engineering.


1994 ◽  
Vol 72 (01) ◽  
pp. 044-053 ◽  
Author(s):  
N Chomiki ◽  
M Henry ◽  
M C Alessi ◽  
F Anfosso ◽  
I Juhan-Vague

SummaryIndividuals with elevated levels of plasminogen activator inhibitor type 1 are at risk of developing atherosclerosis. The mechanisms leading to increased plasma PAI-1 concentrations are not well understood. The link observed between increased PAI-1 levels and insulin resistance has lead workers to investigate the effects of insulin or triglyceride rich lipoproteins on PAI-1 production by cultured hepatocytes or endothelial cells. However, little is known about the contribution of these cells to PAI-1 production in vivo. We have studied the expression of PAI-1 in human liver sections as well as in vessel walls from different territories, by immunocytochemistry and in situ hybridization.We have observed that normal liver endothelial cells expressed PAI-1 while parenchymal cells did not. However, this fact does not refute the role of parenchymal liver cells in pathological states.In healthy vessels, PAI-1 mRNA and protein were detected primarily at the endothelium from the lumen as well as from the vasa vasorum. In normal arteries, smooth muscle cells were able to produce PAI-1 depending on the territory tested. In deeply altered vessels, PAI-1 expression was observed in neovessels scattering the lesions, in some intimal cells and in smooth muscle cells. Local increase PAI-1 mRNA described in atherosclerotic lesions could be due to the abundant neovascularization present in the lesion as well as a raised expression in smooth muscle cells. The increased PAI-1 in atherosclerosis could lead to fibrin deposit during plaque rupture contributing further to the development and progression of the lesion.


1982 ◽  
Vol 48 (01) ◽  
pp. 101-103 ◽  
Author(s):  
B Kirchhof ◽  
J Grünwald

SummaryEndothelial and smooth muscle cells cultured from minipig aorta were examined for their inhibitory activity on thrombin and for their thrombin generating capacity.Endothelial cells showed both a thrombin inhibition and an activation of prothrombin in the presence of Ca++, which was enhanced in the presence of phospholipids. Smooth muscle cells showed an activation of prothrombin but at a lower rate. Both coagulation and amidolytic micro-assays were suitable for studying the thrombin-vessel wall interaction.


1985 ◽  
Vol 53 (02) ◽  
pp. 165-169 ◽  
Author(s):  
Walter E Laug

SummaryTPure cultures of bovine endothelial cells (EC) produce and secrete large amounts of plasminogen activators (PA). Cocultivation of EC with vascular smooth muscle cells (SMC) resulted in a significant decrease of PA activities secreted by the EC, whereas the cellular PA activities remained unaffected. Secreted PA activities were absent in the growth medium as long as the SMC to EC ratio was 2:1 or higher. The PA inhibitory activity of the SMC was rapid and cell-to-cell contact was not necessary.The PA inhibitory activity was present in homogenates of SMC as well as in the medium conditioned by them but not in the extracellular matrix elaborated by these cells. Serum free medium conditioned by SMC neutralized both tissue type (t-PA) and urokinase like (u-PA) plasminogen activators. Gel electrophoretic analysis of SMC conditioned medium followed by reverse fibrin autography demonstrated PA inhibitory activities in the molecular weight (Mr) range of 50,000 to 52,000 similar to those present in media conditioned by bovine endothelial cells or fibroblasts. Regular fibrin zymography of SMC conditioned medium incubated with u-PA or t-PA revealed the presence of a component with a calculated approximate Mr of 45,000 to 50,000 which formed SDS resistant complexes with both types of PA.These data demonstrate that vascular SMC produce and secrete (a) inhibitor(s) of PAs which may influence the fibrinolytic potential of EC.


1996 ◽  
Vol 16 (10) ◽  
pp. 1263-1268 ◽  
Author(s):  
Antonio López Farré ◽  
Juan R. Mosquera ◽  
Lourdes Sánchez de Miguel ◽  
Inmaculada Millás ◽  
Trinidad de Frutos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document