Metastability of Supersaturated Solution and Nucleation

Author(s):  
Noriaki Kubota ◽  
Masanori Kobari ◽  
Izumi Hirasawa
1983 ◽  
Vol 23 ◽  
Author(s):  
G. J. Galvin ◽  
J. W. Mayer ◽  
P. S. Peercy

ABSTRACTTransient electrical conductance has been used to measure the resolidification velocity in silicon containing implanted solutes. Nonequilibrium segregation of the solutes occurs during the rapid resolidification following pulsed laser melting. The velocity of the liquid-solid interface is observed to depend on the type and concentration of the solute. A 25% reduction in solidification velocity is observed for an implanted indium concentration of three atomic percent. Implanted oxygen is also shown to reduce the solidification velocity. The dependence of the velocity on solute concentration impacts a variety of segregation, trapping and supersaturated solution studies.


1934 ◽  
Vol 11 (11) ◽  
pp. 624
Author(s):  
John Dunning ◽  
Philip Pratt ◽  
O. E. Lowman

1962 ◽  
Vol 82 (5) ◽  
pp. 679-682
Author(s):  
Masao Yamanaka ◽  
Morimasa Fujii ◽  
Ikuko Nishimura

2001 ◽  
Vol 5 (2) ◽  
pp. 65-73 ◽  
Author(s):  
John F. Harper

Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.


1991 ◽  
Vol 235 ◽  
Author(s):  
E. Johnson ◽  
K. Hjemsted ◽  
B. Schmidt ◽  
K. K. Bourdelle ◽  
A. Johansen ◽  
...  

ABSTRACTIon implantation of lead or indium into aluminium results in spontaneous phase separation and formation of lead or indium precipitates. The precipitates grow in topotactical alignment with the matrix, giving TEM images characterized by moiré fringes. The size and density of the precipitates increase with increasing fluence until coalescence begins to occur. Implantations at elevated temperatures lead to formation of larger precipitates with well developed facets. This is particularly significant for implantations above the bulk melting point of the implanted species. Melting and solidification have been followed by in-situ TEM heating and cooling experiments. Superheating up to ∼ 50 K above the bulk melting point has been observed, and the largest inclusions melt first. Melting is associated with only partial loss of facetting of the largest inclusions. Initial growth of the inclusions occurs by trapping of atoms retained in supersaturated solution. Further growth occurs by coalescence of neighbouring inclusions in the liquid phase. Solidification is accompanied by a strong undercooling ∼ 30 K below the bulk melting point, where the smallest inclusions solidify first. Solidification is characterized by spontaneous restoration of the facets and the topotactical alignment.


2017 ◽  
Vol 4 (8) ◽  
pp. 170487 ◽  
Author(s):  
Marta Gubitosi ◽  
Pegah Nosrati ◽  
Mona Koder Hamid ◽  
Stefan Kuczera ◽  
Manja A. Behrens ◽  
...  

We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous tetrabutylammonium hydroxide, TBAH(aq), at different concentrations of TBAH, by means of turbidity and small-angle X-ray scattering. The solubility of cellulose increases with increasing TBAH concentration, which is consistent with solubilization driven by neutralization. When comparing the two polymorphs, the solubility of cellulose I is higher than that of cellulose II. This has the consequence that the dissolution of MCC (cellulose I) may create a supersaturated solution with respect to cellulose II. As for the dissolution state of cellulose, we identify three different regimes. (i) In the stable regime, corresponding to concentrations below the solubility of cellulose II, cellulose is molecularly dissolved and the solutions are thermodynamically stable. (ii) In the metastable regime, corresponding to lower supersaturations with respect to cellulose II, a minor aggregation of cellulose occurs and the solutions are kinetically stable. (iii) In the unstable regime, corresponding to larger supersaturations, there is macroscopic precipitation of cellulose II from solution. Finally, we also discuss strong alkali solvents in general and compare TBAH(aq) with the classical NaOH(aq) solvent.


Sign in / Sign up

Export Citation Format

Share Document