New Direct Torque Control Algorithm for High Performance Induction Motor

Author(s):  
S. Srinivasan ◽  
A. Sabari Raja
Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1102 ◽  
Author(s):  
Hamidreza Heidari ◽  
Anton Rassõlkin ◽  
Toomas Vaimann ◽  
Ants Kallaste ◽  
Asghar Taheri ◽  
...  

In this paper, a new vector control strategy is proposed to reduce torque ripples and harmonic currents represented in switching table-based direct torque control (ST-DTC) of a six-phase induction motor (6PIM). For this purpose, a new set of inputs is provided for the switching table (ST). These inputs are based on the decoupled current components in the synchronous reference frame. Indeed, using both field-oriented control (FOC) and direct torque control (DTC) concepts, precise inputs are applied to the ST in order to achieve better steady-state torque response. By applying the duty cycle control strategy, the loss subspace components are eliminated through a suitable selection of virtual voltage vectors. Each virtual voltage vector is based on a combination of a large and a medium vector to make the average volt-seconds in loss subspace near to zero. Therefore, the proposed strategy not only notably reduces the torque ripples, but also suppresses the low frequency current harmonics, simultaneously. Simulation and experimental results clarify the high performance of the proposed scheme.


Author(s):  
Huzainirah Ismail ◽  
Fazlli Patkar ◽  
Auzani Jidin ◽  
Aiman Zakwan Jidin ◽  
Noor Azida Noor Azlan ◽  
...  

<p>Direct Torque Control (DTC) is widely applied for ac motor drives as it offers high performance torque control with a simple control strategy. However, conventional DTC poses some disadvantages especially in term of variable switching frequency and large torque ripple due to the utilization of torque hysteresis controller. Other than that, performance of conventional DTC fed by two-level inverter is also restricted by the limited numbers of voltage vectors which lead to inappropriate selection of voltage vectors for different speed operations. This research aims to propose a Constant Switching Frequency (CSF) torque controller for DTC of induction motor (IM) fed by three-level Neutral-Point Clamped (NPC) inverter. The proposed torque controller utilizes PI controller which apply different gain for different speed operation. Besides, the utilization of NPC inverter provides greater number of voltage vectors which allow appropriate selection of voltage vectors for different operating condition. Using the proposed method, the improvement of DTC drives in term of producing a constant switching operation and minimizing torque ripple are achieved and validated via experimental results.</p>


2005 ◽  
Vol 2 (1) ◽  
pp. 93-116 ◽  
Author(s):  
M. Vasudevan ◽  
R. Arumugam ◽  
S. Paramasivam

This paper presents a detailed comparison between viable adaptive intelligent torque control strategies of induction motor, emphasizing advantages and disadvantages. The scope of this paper is to choose an adaptive intelligent controller for induction motor drive proposed for high performance applications. Induction motors are characterized by complex, highly non-linear, time varying dynamics, inaccessibility of some states and output for measurements and hence can be considered as a challenging engineering problem. The advent of torque and flux control techniques have partially solved induction motor control problems, because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Intelligent controllers are considered as potential candidates for such an application. In this paper, the performance of the various sensor less intelligent Direct Torque Control (DTC) techniques of Induction motor such as neural network, fuzzy and genetic algorithm based torque controllers are evaluated. Adaptive intelligent techniques are applied to achieve high performance decoupled flux and torque control. This paper contributes: i) Development of Neural network algorithm for state selection in DTC; ii) Development of new algorithm for state selection using Genetic algorithm principle; and iii) Development of Fuzzy based DTC. Simulations have been performed using the trained state selector neural network instead of conventional DTC and Fuzzy controller instead of conventional DTC controller. The results show agreement with those of the conventional DTC.


2019 ◽  
Vol 11 (3) ◽  
pp. 293-308
Author(s):  
Rawaa Kadhim Sakran ◽  
Assist. Prof. Dr. Khearia Mohammed Ali

This paper deals with the performance analysis of three phase Induction Motor (IM) with Direct Torque Control based Space Vector Modulation (DTC-SVM). The DTC-SVM scheme is a kind of high-performance control of IM drives to improve the ripples of torque and flux in steady state, which one drawback of conventional DTC. DTC-SVM has three Proportional-Integral (PI) controllers, one used as the PI speed controller and other PI flux controller and PI torque controller, which are utilized to produce the stator voltage references (


2014 ◽  
Vol 573 ◽  
pp. 150-154
Author(s):  
R. Dharmaprakash ◽  
Joseph Henry

This paper proposes the natural extension of classic switching table based direct torque control of induction motor modified for 3-level diode clamped inverter. The proposed method has the advantages of fewer harmonic in the output and low torque ripples. The switching table direct torque control scheme is adopted due to the simplicity of its control algorithm. To demonstrate the performance of proposed multilevel inverter fed direct torque control, the simulations are carried out for constant speed under no load and step change in load. The comparison of the dynamic and steady state performance in terms of torque ripple of the 2-level inverter and 3-level inverters are presented.


Sign in / Sign up

Export Citation Format

Share Document