Plant Genome Engineering Using Zinc Finger Nucleases

Author(s):  
Sandeep Kumar ◽  
William F. Thompson
2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


Genetics ◽  
2011 ◽  
Vol 188 (4) ◽  
pp. 773-782 ◽  
Author(s):  
Dana Carroll

2010 ◽  
Vol 5 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Seokjoong Kim ◽  
Jin-Soo Kim

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yujia Cai ◽  
Rasmus O Bak ◽  
Jacob Giehm Mikkelsen

Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in ‘all-in-one’ lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.


Author(s):  
Erin Zess ◽  
Matthew Begemann

AbstractScientists have developed and deployed successive generations of genome engineering technologies for use in plants, including meganucleases, zinc finger nucleases, TAL effector nucleases, and CRISPR nucleases. Each of these tools has been hailed as potentially revolutionary, capable of providing more efficient and precise ways to modify plant genomes toward improving agronomic traits or making fundamental discoveries. The CRISPR nucleases, in particular, have accelerated the pace of innovation and expanded the boundaries of what is achievable within the plant research space. This review will take care to discuss current plant genome engineering technologies, covering both well-established and up-and-coming tools, as well as describe potential and real-world applications.


Sign in / Sign up

Export Citation Format

Share Document