programmable nucleases
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 4)

Author(s):  
Shalu Kumari Pathak ◽  
Arvind Sonwane ◽  
Subodh Kumar

Background: Programmable nucleases are very promising tools of genome editing (GE), but they suffer from limitations including potential risk of genotoxicity which led to the exploration of safer approach of GE based on RNA-guided recombinase (RGR) platform. RNA-guided recombinase (RGR) platform operates on a typical recognition or target site comprised of the minimal pseudo-core recombinase site, a 5 to 6-base pair spacer flanking it and whole this central region is flanked by two guide RNA-specified DNA sequences or Cas9 binding sites followed by protospacer adjacent motifs (PAMs). Methods: The current study focuses on analysis of entire cattle genome to prepare a detailed map of target sites for RNA-guided hyperactivated recombinase Gin with spacer length six. For this, chromosome wise whole genomic sequence data was retrieved from Ensembl. After that search pattern for recombinase Gin with spacer length six was designed. By using this search pattern, RGR target sites were located by using dreg program of Emboss package. Result: Total number of RGR target sites identified in bovine genome for recombinase Gin was 677 with spacer length six. It was also investigated that whether these RGR target sites are present with in any gene or not and it was found that RGR target sites lies in both genic and intergenic region. Besides this, description of genes in context with these target sites was identified.


Author(s):  
Akshara K. Raut ◽  
Tripti Waghmare

This essay is about intrinsic planning parts that can alternate the enlarge of the particle that regulates our herbal cycles, the genome. Since the 1990s, first-class enchantment has been a focal factor of research. It commenced with the genome undertaking and will proceed to be an ambassador for the foreseeable future. The functions are many, and they are anticipated to have a significant speculative effect as properly as extraordinarily extreme hazards. The genome altering development trends have opened up the technique to truly zero in on and exchange genomic progressions in nearly all eukaryotic cells, whether or not they are planned or bacterial nucleases. Genome editing has loosened up our capacity to grant an explanation for the role of inherited qualities in infection with the aid of accelerating the development of increased right smartphone and models of animal of psychotic cycles, and it has begun to exhibit extraordinarily top achievable in a variety of fields, ranging from indispensable look up to utilized biotechnology and biomedical research. The late boom in the development of programmable nucleases, such as zinc-finger nucleases (ZFNs), file activator-like effector nucleases (TALENs), and assembled reliably interspaced quick palindromic repeat (CRISPR)– Cas-related nucleases, has accelerated the transition of fee from idea to medical practice. We observe the purposes of their subordinate reagents as quality-changing units in a range of human illnesses, and anticipated future medicines, which focuses on eukaryotic cells and animal models, in this evaluation of modern-day advances in the three critical genome-modifying propels (ZFNs, TALENs, and CRISPR/Cas9). Finally, we have a framework for clinical primers to use genome adjusting phases for sickness therapy, as nicely as some of the difficulties encountered throughout implementation.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3570
Author(s):  
Soo-Young Yum ◽  
Goo Jang ◽  
Okjae Koo

Multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to double-strand DNA breaks at multiple loci simultaneously induced by programmable nucleases, including CRISPR/Cas9. However, recently developed base-editing systems can directly substitute target sequences without double-strand breaks. Thus, the base-editing system is expected to be a safer method for multiplex genome-editing platforms for livestock. Target-AID is a base editing system composed of PmCDA1, a cytidine deaminase from sea lampreys, fused to Cas9 nickase. It can be used to substitute cytosine for thymine in 3–5 base editing windows 18 bases upstream of the protospacer-adjacent motif site. In the current study, we demonstrated Target-AID-mediated base editing in porcine cells for the first time. We targeted multiple loci in the porcine genome using the Target-AID system and successfully induced target-specific base substitutions with up to 63.15% efficiency. This system can be used for the further production of various genome-engineered pigs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10355
Author(s):  
Nicolás González González Castro ◽  
Jan Bjelic ◽  
Gunya Malhotra ◽  
Cong Huang ◽  
Salman Hasan Alsaffar

Recent advances in programmable nucleases including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) have propelled genome editing from explorative research to clinical and industrial settings. Each technology, however, features distinct modes of action that unevenly impact their applicability across the entire genome and are often tested under significantly different conditions. While CRISPR-Cas is currently leading the field due to its versatility, quick adoption, and high degree of support, it is not without limitations. Currently, no technology can be regarded as ideal or even applicable to every case as the context dictates the best approach for genetic modification within a target organism. In this review, we implement a four-pillar framework (context, feasibility, efficiency, and safety) to assess the main genome editing platforms, as a basis for rational decision-making by an expanding base of users, regulators, and consumers. Beyond carefully considering their specific use case with the assessment framework proposed here, we urge stakeholders interested in genome editing to independently validate the parameters of their chosen platform prior to commitment. Furthermore, safety across all applications, particularly in clinical settings, is a paramount consideration and comprehensive off-target detection strategies should be incorporated within workflows to address this. Often neglected aspects such as immunogenicity and the inadvertent selection of mutants deficient for DNA repair pathways must also be considered.


Author(s):  
Soo-Young Yum ◽  
Goo Jang ◽  
Okjae Koo

Multiplex genome editing may induce genotoxicity and chromosomal rearrangements due to double-strand DNA breaks at multiple loci simultaneously induced by programmable nucleases, including CRISPR/Cas9. However, recently developed base-editing systems can directly substitute target sequences without double-strand breaks. Thus, the base-editing system is expected to be a safer method for multiplex genome-editing platforms for livestock. Target-AID is a base editing system composed of PmCDA1, a cytidine deaminase from sea lampreys, fused to Cas9 nickase. It can be used to substitute cytosine for thymine in 3-5 base editing windows, 18 bases upstream of the protospacer-adjacent motif site. In the current study, we demonstrated Target-AID-mediated base editing in porcine cells for the first time. We targeted multiple loci in the porcine genome using the Target-AID system and successfully induced target-specific base substitutions with up to 63.15% efficiency. This system can be used for the further production of various genome-engineered pigs.


2021 ◽  
Vol 13 (6) ◽  
pp. 485-502
Author(s):  
Yunus E Eksi ◽  
Ahter D Sanlioglu ◽  
Bahar Akkaya ◽  
Bilge Esin Ozturk ◽  
Salih Sanlioglu

2021 ◽  
Vol 3 ◽  
Author(s):  
Samuele Ferrari ◽  
Valentina Vavassori ◽  
Daniele Canarutto ◽  
Aurelien Jacob ◽  
Maria Carmina Castiello ◽  
...  

In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Laura Daniela Ratner ◽  
Gaston Emilio La Motta ◽  
Olinda Briski ◽  
Daniel Felipe Salamone ◽  
Rafael Fernandez-Martin

Pigs are an important resource for meat production and serve as a model for human diseases. Due to their physiological and anatomical similarities to humans, these animals can recapitulate symptoms of human diseases, becoming an effective model for biomedical research. Although, in the past pig have not been widely used partially because of the difficulty in genetic modification; nowadays, with the new revolutionary technology of programmable nucleases, and fundamentally of the CRISPR-Cas9 systems, it is possible for the first time to precisely modify the porcine genome as never before. To this purpose, it is necessary to introduce the system into early stage zygotes or to edit cells followed by somatic cell nuclear transfer. In this review, several strategies for pig knock-out gene editing, using the CRISPR-Cas9 system, will be summarized, as well as genotyping methods and different delivery techniques to introduce these tools into the embryos. Finally, the best approaches to produce homogeneous, biallelic edited animals will be discussed.


2021 ◽  
Author(s):  
Ekaterina Kropocheva ◽  
Anton Kuzmenko ◽  
Alexei A. Aravin ◽  
Daria Esyunina ◽  
Andrey Kulbachinskiy

ABSTRACTArgonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic Argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique KmAgo nuclease from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo preferentially binds 16-20 nt long 5′-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Target cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA targets. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acid. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


2021 ◽  
Vol 10 (3) ◽  
pp. 513
Author(s):  
Christi T. Salisbury-Ruf ◽  
Andre Larochelle

Homology-directed gene editing of hematopoietic stem and progenitor cells (HSPCs) is a promising strategy for the treatment of inherited blood disorders, obviating many of the limitations associated with viral vector-mediated gene therapies. The use of CRISPR/Cas9 or other programmable nucleases and improved methods of homology template delivery have enabled precise ex vivo gene editing. These transformative advances have also highlighted technical challenges to achieve high-efficiency gene editing in HSPCs for therapeutic applications. In this review, we discuss recent pre-clinical investigations utilizing homology-mediated gene editing in HSPCs and highlight various strategies to improve editing efficiency in these cells.


Sign in / Sign up

Export Citation Format

Share Document