The Kinematics of a Debris Avalanche on the Sumatra Margin

Author(s):  
A. S. Bradshaw ◽  
D. R. Tappin ◽  
D. Rugg
Keyword(s):  
2014 ◽  
Vol 93 ◽  
pp. 156-160 ◽  
Author(s):  
Steven Carey ◽  
Robert Ballard ◽  
Katherine L.C. Bell ◽  
Richard J. Bell ◽  
Patrick Connally ◽  
...  

2010 ◽  
Vol 193 (1-2) ◽  
pp. 93-105 ◽  
Author(s):  
Stefano Morelli ◽  
Victor Hugo Garduño Monroy ◽  
Giovanni Gigli ◽  
Giacomo Falorni ◽  
Eleazar Arreygue Rocha ◽  
...  
Keyword(s):  

2021 ◽  
pp. SP520-2021-144
Author(s):  
Marie-Noëlle Guilbaud ◽  
Corentin Chédeville ◽  
Ángel Nahir Molina-Guadarrama ◽  
Julio Cesar Pineda-Serrano ◽  
Claus Siebe

AbstractThe eruption of the ∼10 km3 rhyolitic Las Derrumbadas twin domes about 2000 yrs ago has generated a wide range of volcano-sedimentary deposits in the Serdán-Oriental lacustrine basin, Trans-Mexican Volcanic Belt. Some of these deposits have been quarried, creating excellent exposures. In this paper we describe the domes and related products and interpret their mode of formation, reconstructing the main phases of the eruption as well as syn-and-post eruptive erosional processes. After an initial phreatomagmatic phase that built a tuff ring, the domes grew as an upheaved plug lifting a thick sedimentary pile from the basin floor. During uplift, the domes collapsed repeatedly to form a first-generation of hetero-lithologic hummocky debris avalanche deposits. Subsequent dome growth produced a thick talus and pyroclastic density currents. Later, the hydrothermally-altered over-steepened dome peaks fell to generate 2nd generation, mono-lithologic avalanches. Subsequently, small domes grew in the collapse scars. From the end of the main eruptive episode onwards, heavy rains remobilized parts of the dome carapaces and talus, depositing lahar aprons. Las Derrumbadas domes are still an important source of sediments in the basin, and ongoing mass-wasting processes are associated with hazards that should be assessed, given their potential impact on nearby populations.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5752296


2017 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanche caused by the sector collapse of a volcanic mountain often forms characteristic depositional landforms including hummocks. Not only sedimentological but also geomorphological analyses of debris avalanche deposits (DAD) are crucial to clarify the size, mechanisms, and processes of the debris avalanche. We investigate the morphology of hummocks newly identified in the DAD at the north-eastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion multi-view stereo photogrammetry (SfM), we obtained high-definition digital elevation model (DEM) and orthorectified image of the DAD surface with hummocks. Detailed geometric features of the hummocks are investigated using the RPAS-derived high-definition DEM. The source volume of the DAD was also estimated by reconstructing the original shape of the mountain body using a lower-resolution satellite-based DEM. For this, topographic cross sections are examined based on the slopes around the scar that are regarded as the remnant topography preserved since the sector collapse. The spatial distribution of hummocks shows an unusual pattern regarding the distance-size relationships, i.e., anomalously concentrated in a certain distance from the source. The hummocks are found to be aligned toward the flow direction of the debris avalanche, suggesting the extensional regime of the debris avalanche. These facts indicate that this debris avalanche did not follow the typical flow type of debris avalanches observed in the other cases. Instead, the topographic constraints by former caldera wall and fault-induced lineaments could have strongly affected the flow course and pattern in this particular case: The pre-existing caldera wall topography could have acted as the topographic barriers for the debris avalanche to force the initial flow to turn northward, and the flow regime to be once compressional followed by extensional at the narrow and steepened outlet valley. Also, the estimated volume of the DAD 12–15 × 108 m3 gives its mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche could have flown down to the far downstream areas from the presently-observed limit of the DAD extent. Assessments of the DAD including the results of this study can provide further insights into the risk and mitigation of potential disasters in the study area.


2016 ◽  
Vol 16 (2) ◽  
pp. 497-507 ◽  
Author(s):  
Z. F. Chang ◽  
X. L. Chen ◽  
X. W. An ◽  
J. W. Cui

Abstract. The 3 August 2014 Ludian, China, Ms  =  6.5 earthquake caused many large landslides. The biggest occurred at Hongshiyan near the epicenter, had a volume of 1.0  ×  107 m3 and dammed the Niulanjiang River, creating a large lake. Post-event field investigations yielded detailed data on the following aspects: rock structure of the landslide, the local lithology and geometry of the area around the landslide dam and composition and grain sizes of the debris avalanche. Based on these data, this work analyzes the geology and topography of the Hongshiyan area, and explores reasons for the occurrence of an unusually large landslide at this location. Our analysis suggests the following conditions are responsible for this catastrophic event. (1) Due to recent crustal deformation, intense incision on the river increased topographic relief with steep slopes and scarps. (2) Combined structures, including unloading fissures, high-angle joints and low-angle beds along the river, as well as an upper-strong and lower-weak interlayer structure on the slope, especially the existence of weak layers in the slope, are important factors that contribute to this large failure. (3) Hongshiyan lies near an active fault, where intense crustal deformation has resulted in rock fractures and weathering, and frequent earthquakes may progressively reduce the strength of the slope. (4) During the Ms  =  6.5 earthquake, the terrain and site conditions led to abnormally strong ground shaking. The combined impacts of these factors triggered a very large landslide during a moderate-sized earthquake.


2011 ◽  
Vol 284 (1-4) ◽  
pp. 189-202 ◽  
Author(s):  
Thomas Giachetti ◽  
Raphaël Paris ◽  
Karim Kelfoun ◽  
Francisco José Pérez-Torrado

2021 ◽  
pp. SP520-2021-63
Author(s):  
L. Capra ◽  
M. Roverato ◽  
J. P. Bernal ◽  
A. Cortés

AbstractVolcán de Colima, one of the most active volcanoes in Mexico, experienced at least nine flank failures during the last 30,000 years, with catastrophic effects on the environment that implies the formation of temporary dams where lacustrine sediments accumulated for hundreds of years. These lacustrine sequences preserve an exceptional record from which to reconstruct the effect of subsequent volcanic eruptions and, eventually, contemporary environmental and climatic conditions. Here we analyze an Early Holocene lacustrine sequence, named “Gypsum King”, which accumulated in a short-lived temporary lake, likely formed by emplacement of the 10755-11230 cal. yr BP Mesa-Yerbabuena debris avalanche. Through detailed analysis of the 1.8 m thick lacustrine sequence (14C ages, sulfur content, grain size), it was possible to identify the 8.2 kyr global climate event and better constrain the Early-Holocene main sub-plinian to plinian eruptions of Volcán de Colima. The results presented here highlight the potential to explore sulfur content and abrupt change in grainsize in lacustrine sediments as additional proxies to better constrain eruptive phases in volcanic environments. Finally, the Gypsum King sequence provides the first evidence of the 8.2 kyr global climate event along the Eastern tropical Pacific Coast.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5563424


Sign in / Sign up

Export Citation Format

Share Document