New Disposable Fixed-Bed Bioreactor for Cell Culture and Virus Production Based on a Proprietary Agitation and Aeration System

2010 ◽  
pp. 151-155
Author(s):  
J.-C. Drugmand ◽  
N. Havelange ◽  
S. Osumba ◽  
F. Bosco ◽  
F. Debras ◽  
...  
1994 ◽  
Vol 77 (2) ◽  
pp. 212-214 ◽  
Author(s):  
Nobuo Nagai ◽  
Iwao Kuroiwa ◽  
Takahisa Kanda ◽  
Mitsuo Okazaki

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Valérie Gelbgras ◽  
Christophe E Wylock ◽  
Jean-Christophe Drugmand ◽  
Benoît Haut

In this work, a mathematical model of a fixed-bed bioreactor for the animal cell culture is developed to study the optimization and the scale-up of this bioreactor. Several cell populations are considered: the cells in suspension in the medium at the beginning of the process and the adhering cells to the fixed-bed. The model includes a capture rate kinetic of the cells in suspension by the fixed-bed and a spatial distribution of the nutrient and by-product concentrations in the fixed-bed. Therefore, the model reports the potential gradients of the cell concentrations in the fixed-bed. Some model parameters are experimentally identified and the model is validated using experimental data obtained with two pilot bioreactors. The model is used as a simulation tool to study the influence of the bioreactor design or the velocity field of the culture medium on the cell concentration gradients in the fixed-bed bioreactor and to optimize the operating conditions, the design, and the scale-up of this bioreactor.


2015 ◽  
Vol 266 ◽  
pp. 233-240 ◽  
Author(s):  
C. Cortés-Lorenzo ◽  
M. Rodríguez-Díaz ◽  
D. Sipkema ◽  
B. Juárez-Jiménez ◽  
B. Rodelas ◽  
...  

Author(s):  
Huicheng Shi ◽  
John Yin

Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 hours and for multi-step infections every four to 24 hours over 144 hours, generating a rich dataset. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a 7-fold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this work highlights how image-based measurements can contribute to discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.


Sign in / Sign up

Export Citation Format

Share Document