scholarly journals Kinetics of Asian and African Zika Virus Lineages over Single-cycle and Multi-cycle Growth in Culture: gene expression, cell killing, virus production, and mathematical modeling

Author(s):  
Huicheng Shi ◽  
John Yin

Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 hours and for multi-step infections every four to 24 hours over 144 hours, generating a rich dataset. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a 7-fold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this work highlights how image-based measurements can contribute to discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.

Author(s):  
Jonathan O. Rayner ◽  
Raj Kalkeri ◽  
Scott Goebel ◽  
Zhaohui Cai ◽  
Brian Green ◽  
...  

The establishment of a well characterized non-human primate model of Zika virus (ZIKV) infection is critical for the development of medical interventions. In this study, challenging Indian rhesus macaques (IRMs) with ZIKV strains of the Asian lineage resulted in dose dependent peak viral loads between days 2 and 5 post infection; and a robust immune response which protected the animals from homologous and heterologous re-challenge. In contrast, viremia in IRMs challenged with an African lineage strain was below the assays lower limit of quantitation and the immune response was insufficient to protect from re-challenge. These results corroborate previous observations but are contrary to reports using other African strains obviating the need for additional studies to elucidate the variables contributing to the disparities. Nonetheless, the utility of an Asian lineage ZIKV IRM model for countermeasures development was verified by vaccinating animals with a formalin inactivated reference vaccine and demonstrating sterilizing immunity against a subsequent subcutaneous challenge.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Sang-Im Yun ◽  
Byung-Hak Song ◽  
Jordan C. Frank ◽  
Justin G. Julander ◽  
Irina A. Polejaeva ◽  
...  

Here, we report the 10,807-nucleotide-long consensus RNA genome sequences of three spatiotemporally distinct and genetically divergent Zika virus strains, with the functionality of their genomic sequences substantiated by reverse genetics: MR-766 (African lineage, Uganda, 1947), P6-740 (Asian lineage, Malaysia, 1966), and PRVABC-59 (Asian lineage-derived American strain, Puerto Rico, 2015).


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Jason T. Ladner ◽  
Michael R. Wiley ◽  
Karla Prieto ◽  
Chadwick Y. Yasuda ◽  
Elyse Nagle ◽  
...  

Zika virus is an emerging human pathogen of great concern due to putative links to microcephaly and Guillain-Barre syndrome. Here, we report the complete genomes, including the 5′ and 3′ untranslated regions, of five Zika virus isolates, one from the Asian lineage and four from the African lineage.


2021 ◽  
Author(s):  
Chelsea M. Crooks ◽  
Andrea M. Weiler ◽  
Sierra L. Rybarczyk ◽  
Mason Bliss ◽  
Anna S. Jaeger ◽  
...  

Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in-vitro and in-vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titer and caused more severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here we infected four pregnant rhesus macaques with a low-passage strain of African-lineage ZIKV and compared its pathogenesis to a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. Viral replication kinetics were not significantly different between the two experimental groups and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1-1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV vRNA was found in maternal-fetal interface tissues in the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015-16. In its most recent update, the WHO stated that improved understanding of African-lineage pathogenesis during pregnancy must be a priority. Recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational non-human primate model. We show African-lineage isolates replicate with similar kinetics to Asian-lineage isolates and can infect the placenta. However, there was no evidence of more severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for future epidemiological and translational in-vivo studies with African-lineage ZIKV.


Author(s):  
Blake Schouest ◽  
Tiffany A. Peterson ◽  
Dawn M. Szeltner ◽  
Elizabeth A. Scheef ◽  
Melody Baddoo ◽  
...  

AbstractAstrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.


2016 ◽  
Author(s):  
Rodrigo Delvecchio ◽  
Luiza M Higa ◽  
Paula Pezzuto ◽  
Ana Luiza Valadão ◽  
Patrícia P Garcez ◽  
...  

SummaryZika virus (ZIKV) infectionin uteromight lead to microcephaly and other congenital defects. In adults, cases of Guillain-Barré syndrome and meningoencephalitis associated with ZIKV infection have been reported, and no specific therapy is available so far. There is urgency for the discovery of antiviral agents capable of inhibiting viral replication and its deleterious effects. Chloroquine is widely administered as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in VERO, human brain microvascular endothelial, and neural stem cells. We demonstratedin vitrothat chloroquine reduces the number of ZIKV-infected cells, virus production and cell death promoted by ZIKV infection without cytotoxic effects. Our results suggest that chloroquine is a promising candidate for ZIKV clinical trials, since it is already approved for clinical use and can be safely administered to pregnant woman.


2020 ◽  
Author(s):  
Chelsea M. Crooks ◽  
Andrea M. Weiler ◽  
Sierra L. Rybarczyk ◽  
Mason Bliss ◽  
Anna S. Jaeger ◽  
...  

ABSTRACTFollowing the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The isolates responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in-vitro and in-vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titer and caused more severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here we infected four pregnant rhesus macaques with a low-passage strain of African-lineage ZIKV and compared its pathogenesis to a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-infected controls. Viral replication kinetics were not significantly different between the two experimental groups and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery in either group. However, a significantly higher burden of ZIKV vRNA was found in maternal-fetal interface tissues in the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV isolates of any genetic lineage pose a threat to women and their infants.IMPORTANCEZIKV was first identified over 70 years ago in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015-16. In its most recent update, the WHO stated that improved understanding of African-lineage pathogenesis during pregnancy must be a priority. Recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational non-human primate model. We show African-lineage isolates replicate with similar kinetics to Asian-lineage isolates and are capable of infecting the placenta. However, there was no evidence of more severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to women and their infants and the need for future epidemiological and translational in-vivo studies with African-lineage ZIKV.


2018 ◽  
Author(s):  
Theodore Gobillot ◽  
Daryl Humes ◽  
Amit Sharma ◽  
Julie Overbaugh

AbstractType-I interferon (IFN-I) is an important aspect of host innate antiviral response. Recent studies have shown that IFN-I can inhibit Zika virus (ZIKV) replication and that this is mediated in part by Interferon-induced transmembrane protein 3 (IFITM3). ZIKV infections in South America have led to severe congenital syndrome in a subset of infected infants. ZIKV was first identified in Africa, where there is limited evidence for the pathogenic effects associated with the American outbreak, which is fueled by infection with Asian-lineage strains, raising the possibility that the African and Asian ZIKV lineages have distinct pathogenic properties. Given the observation that IFN-I can inhibit ZIKV replication in cell culture, we asked whether ZIKV strains differed in their susceptibility to IFN-I. There was a range of susceptibilities to IFN-I inhibition across virus strains. Virus production in A549 cells was reduced from 3-42-fold for IFNα and 63-807-fold for IFNβ across a panel of nine viruses, five from the African-lineage and four from the Asian-lineage. African-lineage ZIKV strains were more resistant to IFN-I than Asian-lineage strains, but this difference was only significant for IFNα-mediated restriction (p = 0.049). Notably, over-expression of IFITM3 at similar levels induced by IFN-I did not significantly restrict either a prototype African lineage (MR 766) or Asian lineage (PRVABC59) isolate. Moreover, knocking out IFITM3 expression did not result in a significant increase in viral replication or a diminishment of the inhibition by IFN-I. Overall, our findings show that while diverse ZIKV strains are susceptible to the antiviral effects of IFN-I, African-lineage strains are more resistant to IFNα. In addition, the majority of the IFN-I-induced inhibition of ZIKV strains cannot be explained by IFITM3, suggesting that other unknown ISGs may be the driving force of the type I IFN response against ZIKV.Author summaryThe innate immune system, and specifically the type-I interferon response, is a critical component of the host response against viral infections. The recent unprecedented spread and severe pathogenic features of Zika virus in the Americas have led to significant interest in characterizing features of Zika virus strains that have fueled the American outbreak. Zika virus was first identified in Africa, where there is limited evidence for the pathogenic effects associated with the American outbreak. Here, we demonstrate that African-lineage Zika virus strains are significantly more resistant to the effects of type-I interferon, and that type-I interferon-mediated restriction of Zika virus strains is not explained by the host factor Interferon-induced transmembrane protein 3. This improved understanding of Zika virus-host interactions may explain certain pathogenic features of Asian-lineage Zika virus strains that have fueled the American Zika virus epidemic, and supports the search for as-yet-unidentified actors in the interferon response against Zika virus.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Sign in / Sign up

Export Citation Format

Share Document