Hydroclimatological Modelling of Organic Carbon Dissolution in Lake Maggiore, Northern Italy

Author(s):  
Gianni Bellocchi ◽  
Nazzareno Diodato
2020 ◽  
Author(s):  
alessia perego ◽  
marco acutis ◽  
calogero schillaci

<p>Conservative Agriculture (CA) practices are recognized to enhance soil organic carbon stock and in turn to mitigate the effect of climate change. One of the CA principles is to integrate cover crops (CC) into the cropping systems. The termination of CC before the cash crop sowing and the weeds control are the most critical aspects to manage in the CA. The technique currently adopted by farmers for the termination of CC implies the use of Glyphosate. However, the European Commission is currently discussing the possibility of banning the use of this herbicide due to the negative effects on human health and the agro-environment. The disk harrow (DH) or the roller-crimper (RC) can be adopted in CA as an alternative to the use of Glyphosate for the devitalization of CC, their incorporation into the soil (in the case of the disk harrow), and the reduction of weed pressure on the subsequent cash crop.</p><p>From November 2017 to October 2019, soil organic carbon (SOC, g kg<sup>-1</sup>) and crop biomass production were observed in a 2-year field experiment located in Lodi (northern Italy), in which minimum tillage (MT) has been applied for the last 5 years. The soil was loamy and SOC was 16.2 g kg<sup>-1</sup> at the beginning of the experiment. The winter CC was barley (from November to May) and the cash crop was soybean (from June to October). The experiment consisted in three treatments replied for two consecutive years in a randomized block design: Glyphosate spray + DH + sowing + hoeing (MT-GLY); DH + sowing + hoeing (MT-ORG); RC + sod seeding (NT-ORG).</p><p>At the end of 2019, SOC resulted in a higher increase in MT-GLY (+15%) and in MT-ORG (+14%) than in NT-ORG (+6%; p<0.01). This was due to the fact that CC litter in NT-ORG was not in direct contact with soil particles and the process of immobilization was lower than in the other treatments.</p><p>Moreover, the increase in SOC resulted positively correlated to the CC biomass (2018+2019), which was significantly lower in NT-ORG. In particular, no differences of soybean and CC between the three treatments were observed at the end of 2018, but MT-GLY resulted in significantly higher CC and soybean biomass at the end of the second year (+32%, p<0.01). MT-GLY allows to stock more carbon via photosynthesis that in turn results in higher SOC content.</p><p>However, if we consider the tractor fuel consumption (for Glyphosate spray, DH, RC, hoeing), along with the biomass production, the carbon sequestration did not vary between the three treatments.</p><p>Further studies are needed for the definition of optimized field management practices to reduce the passage of machinery while increasing crop production and SOC.</p>


Chemosphere ◽  
2012 ◽  
Vol 88 (3) ◽  
pp. 344-351 ◽  
Author(s):  
Roberta Bettinetti ◽  
Silvia Quadroni ◽  
Marina Manca ◽  
Roberta Piscia ◽  
Pietro Volta ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 10539
Author(s):  
Valentina Brombin ◽  
Enrico Mistri ◽  
Mauro De Feudis ◽  
Camilla Forti ◽  
Gian Marco Salani ◽  
...  

Sustainable agricultural management is needed to promote carbon (C) sequestration in soil, prevent loss of soil fertility, and reduce the release of greenhouse gases. However, the influence of agronomic practices on soil C sequestration depends on the existing pedoclimatic features. We characterized the soils of three farms far away each other in the Emilia-Romagna region (Northern Italy): an organic farm in the Northern Apennines, a biodynamic farm, and a conventional farm on the Po Plain. The total, inorganic, and organic carbon in soil, as well as the distinct humic fractions were investigated, analyzing both the elemental and isotopic (13C/12C) composition. In soils, organic matter appears to be variously affected by mineralization processes induced by microorganisms that consume organic carbon. In particular, organic carbon declined in farms located in the plain (e.g., organic carbon down to 0.75 wt%; carbon stock0-30 cm down to 33 Mg/ha), because of the warmer climate and moderately alkaline environment that enhance soil microbial activity. On the other hand, at the mountain farm, the minimum soil disturbance, the cold climate, and the neutral conditions favored soil C sequestration (organic carbon up to 4.42 wt%; carbon stock0-30 cm up to 160 Mg/ha) in humified organic compounds with long turnover, which can limit greenhouse gas emissions into the atmosphere. This work shows the need for thorough soil investigations, to propose tailored best-practices that can reconcile productivity and soil sustainability.


Sign in / Sign up

Export Citation Format

Share Document