Diversity and Differentiation at the Nucleotide Level

Author(s):  
Angela Karp ◽  
Peter G. Isaac ◽  
David S. Ingram
Keyword(s):  
2012 ◽  
Vol 93 (9) ◽  
pp. 1996-2007 ◽  
Author(s):  
Kim B. Westgeest ◽  
Miranda de Graaf ◽  
Mathieu Fourment ◽  
Theo M. Bestebroer ◽  
Ruud van Beek ◽  
...  

Each year, influenza viruses cause epidemics by evading pre-existing humoral immunity through mutations in the major glycoproteins: the haemagglutinin (HA) and the neuraminidase (NA). In 2004, the antigenic evolution of HA of human influenza A (H3N2) viruses was mapped (Smith et al., Science 305, 371–376, 2004) from its introduction in humans in 1968 until 2003. The current study focused on the genetic evolution of NA and compared it with HA using the dataset of Smith and colleagues, updated to the epidemic of the 2009/2010 season. Phylogenetic trees and genetic maps were constructed to visualize the genetic evolution of NA and HA. The results revealed multiple reassortment events over the years. Overall rates of evolutionary change were lower for NA than for HA1 at the nucleotide level. Selection pressures were estimated, revealing an abundance of negatively selected sites and sparse positively selected sites. The differences found between the evolution of NA and HA1 warrant further analysis of the evolution of NA at the phenotypic level, as has been done previously for HA.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Brent Richter ◽  
Manyuan Long ◽  
R C Lewontin ◽  
Eiji Nitasaka

A study of polymorphism and species divergence of the dpp gene of Drosophila has been made. Eighteen lines from a population of D. melanogaster were sequenced for 5200 bp of the Hin region of the gene, coding for the dpp polypeptide. A comparison was made with sequence from D. simulans. Ninety-six silent polymorphisms and three amino acid replacement polymorphisms were found. The overall silent polymorphism (0.0247) is low, but haplotype diversity (0.0066 for effectively silent sites and 0.0054 for all sites) is in the range found for enzyme loci. Amino acid variation is absent in the N-terminal signal peptide, the C-terminal TGF-β peptide and in the N-terminal half of the pro-protein region. At the nucleotide level there is strong conservation in the middle half of the large intron and in the 3′ untranslated sequence of the last exon. The 3′ untranslated conservation, which is perfect for 110 bp among all the divergent species, is unexplained. There is strong positive linkage disequilibrium among polymorphic sites, with stretches of apparent gene conversion among originally divergent sequences. The population apparently is a migration mixture of divergent clades.


2005 ◽  
Vol 86 (2) ◽  
pp. 491-499 ◽  
Author(s):  
Peter Revill ◽  
Xuan Trinh ◽  
James Dale ◽  
Rob Harding

Sequencing of the monopartite RNA genome of a Fijian isolate of Taro vein chlorosis virus (TaVCV) confirmed that it is a definitive rhabdovirus with most similarity to members of the genus Nucleorhabdovirus. The TaVCV 12 020 nt negative-sense RNA genome contained six ORFs in the antigenomic sequence, equivalent to the N, P, 3, M, G and L genes that have been identified in other rhabdoviruses. The putative gene products had highest similarity to those of the nucleorhabdovirus Maize mosaic virus. A characteristic 3′-AAUUCUUUUUGGGUUGU/A-5′ sequence was identified in each of the intergenic regions and the TaVCV leader and trailer sequences comprised 140 and 61 nt, respectively. Assignment of TaVCV to the genus Nucleorhabdovirus was supported by thin-section electron microscopy of TaVCV-infected taro leaves, which identified virions budding from nuclear membranes into the perinuclear space. Variability studies identified high levels of TaVCV sequence diversity. Within the L gene of 20 TaVCV isolates from Fiji, the Federated States of Micronesia, New Caledonia, Papua New Guinea, Solomon Islands and Vanuatu, maximum variability at the nucleotide level was 27·4 %. Within the N gene, maximum variability among 15 isolates at the nucleotide level was 19·3 %. The high level of TaVCV variability observed suggested that the introduction of TaVCV to the Pacific Islands was not a recent occurrence.


Author(s):  
Jasbir S. Dalal ◽  
Chengran Yang ◽  
Darshan Sapkota ◽  
Allison M. Lake ◽  
David R. O'Brien ◽  
...  

Genetics ◽  
2019 ◽  
Vol 212 (2) ◽  
pp. 445-460 ◽  
Author(s):  
Duyen T. Bui ◽  
Joachim J. Li

2002 ◽  
Vol 46 (11) ◽  
pp. 3606-3612 ◽  
Author(s):  
I.-L. Anthonisen ◽  
M. Sunde ◽  
T. M. Steinum ◽  
M. S. Sidhu ◽  
H. Sørum

ABSTRACT A part (12 kb) of a plasmid containing the β-lactamase genes of Tn552, the disinfectant resistance gene qacA, and flanking DNA has been cloned from a Staphylococcus haemolyticus isolate and sequenced. This region was used to map the corresponding regions in six other multiresistant S. haemolyticus isolates of human and animal origin. The organizations of the genetic structures were almost identical in all isolates studied. The β-lactamase and qacA genes from S. haemolyticus have >99.9% identities at the nucleotide level with the same genes from S. aureus, demonstrating that various staphylococcal species able to colonize animal and human hosts can exchange the genetic elements involved in resistance to antibiotics and disinfectants. The use of antibiotics and disinfectants in veterinary practice and animal husbandry may also contribute to the selection and maintenance of resistance factors among the staphylococcal species. Different parts of the 12-kb section analyzed had high degrees of nucleotide identity with regions from several other different Staphylococcus aureus plasmids. This suggests the contribution of interplasmid recombination in the evolutionary makeup of this 12-kb section involving plasmids that can intermingle between various staphylococcal species. The lateral spread of resistance genes between various staphylococcal species is probably facilitated by the generation of large multiresistance plasmids and the subsequent interspecies exchange of them.


2019 ◽  
Vol 18 (30) ◽  
pp. 2544-2554 ◽  
Author(s):  
Sumit Biswas

Since their discovery in the 1990’s, the study of a class of non-coding, single-stranded RNAs, christened the microRNAs has opened up new vistas in the field of cancer biology. MicroRNAs bind to their target mRNAs to act as either oncogenes or tumour suppressors. With the near-complete elucidation of the biogenesis pathway, and the advent of rapid sequencing technologies, microRNAs have slowly cemented their place as essential biomarkers for delineating the progression, metastasis, relapse or drug resistance of cancer. Being crucial players in the cancer pathway, there has been considerable urgency in designing molecules - both at the nucleotide and non-nucleotide level to counter the effects of their binding. A number of different approaches have yielded quite a body of compounds which have been found to be effective in the treatment of various tumours across many different organs. In this study, the focus is on the review of the timeline of discovery and characterization of microRNAs, underlining their importance in different cancers, shedding light on the discovery of anti-microRNA compounds and illustrating their uses in deriving new strategies to combat cancer.


2019 ◽  
Vol 8 (20) ◽  
Author(s):  
Muhammad Ali ◽  
Dario Rangel Shaw ◽  
Pascal E. Saikaly

A novel anaerobic ammonium-oxidizing (anammox) bacterium was detected in an upflow column reactor treating synthetic nitrogen-rich saline solution. Here, we assembled a 4.59-Mb draft genome sequence of this bacterium, identified as a member of the genus “Candidatus Scalindua,” that has 84% nucleotide-level genomic similarity with the closest related anammox bacterium (“Candidatus Scalindua rubra”).


Sign in / Sign up

Export Citation Format

Share Document