Possibilities and Limitations in the Growth of Mixed Metal Oxide Particles from Aqueous Media

Author(s):  
Miguel A. Blesa ◽  
Galo J. A.A. Soler-Illia ◽  
Roberto J. Candal ◽  
Alberto E. Regazzoni
2018 ◽  
Vol 101 (10) ◽  
pp. 4452-4457 ◽  
Author(s):  
Brian D. Ehrhart ◽  
Barbara J. Ward ◽  
Benjamin M. Richardson ◽  
Kristi S. Anseth ◽  
Alan W. Weimer

1993 ◽  
Vol 310 ◽  
Author(s):  
C.D. Chandler ◽  
Q. Powell ◽  
M.J. Hampden-Smith ◽  
T.T. Kodas

AbstractSub-micron sized metal oxide particles were formed via aerosol decomposition using single-source mixed metal-organic precursors specifically designed to decompose at low temperatures. The advantage of these single-source precursors over mixtures of individual precursors is that each particle contains a fixed stoichiometry and molecular level homogeneity. Furthermore, the loss of volatile intermediates (such as PbO) may be avoided. Aerosol processing routes can produce uniform sub-micron sized powder that can be sintered at low temperatures for various thin film and membrane applications. The single-source precursors were prepared in pyridine by reaction of divalent metal α-hydroxycarboxylates of general empirical formula A(O2CCMe2OH)2 (where A = Pb, Ca, Sr, Ba; Me = methyl) with metal alkoxides (for example, Ti(O-i-Pr)4) with the elimination of two equivalents of alcohol. These species were then hydrolyzed in solution and yellow powders were isolated by removal of the pyridine solvent in vacuo. These powders were dissolved in water and used to prepare mixed metal oxide powders via spray pyrolysis. Phase-pure submicron-sized particles of PbTiO3 and BaTiO3 were produced at temperatures of 600-900 °C. The particles were hollow, ranged in size from 0.1 to 1 μm and consisted of 30-50 nm crystallites.


2017 ◽  
Vol 29 (17) ◽  
pp. 1605902 ◽  
Author(s):  
Bu Yuan Guan ◽  
Akihiro Kushima ◽  
Le Yu ◽  
Sa Li ◽  
Ju Li ◽  
...  

Author(s):  
Periasamy Anbu ◽  
Subash C.B. Gopinath ◽  
Kandasamy Saravanakumar ◽  
Sekar Vijayakumar ◽  
Santheraleka Ramanathan ◽  
...  

1994 ◽  
Vol 210 (1-2) ◽  
pp. 177-184 ◽  
Author(s):  
K.M. Cruickshank ◽  
F.P. Glasser

2021 ◽  
Vol 4 ◽  
pp. 100085 ◽  
Author(s):  
Karthik Kannan ◽  
D Radhika ◽  
D. Gnanasangeetha ◽  
L. Sivarama Krishna ◽  
K Gurushankar

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Khadijah H. Alharbi ◽  
Ali Alsalme ◽  
Ahmed Bader A. Aloumi ◽  
Mohammed Rafiq H. Siddiqui

Oxidation is an important organic transformation, and several catalysts have been reported for this conversion. In this study, we report the synthesis of mixed metal oxide CuxZnyO, which is prepared by a coprecipitation method by varying the molar ratio of Cu and Zn in the catalytic system. The prepared mixed metal oxide CuxZnyO was evaluated for catalytic performance for toluene oxidation. Various parameters of the catalytic evaluation were studied in order to ascertain the optimum condition for the best catalytic performance. The results indicate that aging time, calcination temperature, reaction temperature, and feed rate influence catalytic performance. It was found that the catalyst interfaces apparently enhanced catalytic activity for toluene oxidation. The XRD diffractograms reveal the crystalline nature of the mixed metal oxide formed and also confirm the coexistence of hexagonal and monoclinic crystalline phases. The catalyst prepared by aging for 4 h and calcined at 450 °C was found to be the best for the conversion of toluene to benzaldehyde while the reactor temperature was maintained at 250 °C with toluene fed into the reactor at 0.01 mL/min. The catalyst was active for about 13 h.


Author(s):  
Akash P. Bhat ◽  
Ananda J. Jadhav ◽  
Chandrakant R. Holkar ◽  
Dipak V. Pinjari

Sign in / Sign up

Export Citation Format

Share Document