Bimetallic Mixed Metal Oxide (CuO/NiO) In Fusion with Nitrogen-doped Graphene Oxide: An Alternate Approach for Developing Potential Biocarrier

Author(s):  
Periasamy Anbu ◽  
Subash C.B. Gopinath ◽  
Kandasamy Saravanakumar ◽  
Sekar Vijayakumar ◽  
Santheraleka Ramanathan ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 760
Author(s):  
Mujeeb Khan ◽  
Syed Farooq Adil ◽  
Mohamed E. Assal ◽  
Abdulrahman I. Alharthi ◽  
Mohammed Rafi Shaik ◽  
...  

Catalytic efficacy of metal-based catalysts can be significantly enhanced by doping graphene or its derivatives in the catalytic protocol. In continuation of previous work regarding the catalytic properties of highly-reduced graphene oxide (HRG), graphene-oxide (GO) doped mixed metal oxide-based nanocomposites, herein we report a simple, straightforward and solventless mechanochemical preparation of N-doped graphene (NDG)/mixed metal oxide-based nanocomposites of ZnO–MnCO3 (i.e., ZnO–MnCO3/(X%-NDG)), wherein N-doped graphene (NDG) is employed as a dopant. The nanocomposites were prepared by physical milling of separately fabricated NDG and ZnO–MnCO3 calcined at 300 °C through eco-friendly ball mill procedure. The as-obtained samples were characterized via X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Raman, Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and surface area analysis techniques. To explore the effectiveness of the obtained materials, liquid-phase dehydrogenation of benzyl alcohol (BOH) to benzaldehyde (BH) was chosen as a benchmark reaction using eco-friendly oxidant (O2) without adding any harmful surfactants or additives. During the systematic investigation of reaction, it was revealed that the ZnO–MnCO3/NDG catalyst exhibited very distinct specific-activity (80 mmol/h.g) with a 100% BOH conversion and <99% selectivity towards BH in a very short time. The mechanochemically synthesized NDG-based nanocomposite showed remarkable enhancement in the catalytic performance and increased surface area compared with the catalyst without graphene (i.e., ZnO–MnCO3). Under the optimum catalytic conditions, the catalyst successfully transformed various aromatic, heterocyclic, allylic, primary, secondary and aliphatic alcohols to their respective ketones and aldehydes with high selectively and convertibility without over-oxidation to acids. In addition, the ZnO–MnCO3/NDG was also recycled up to six times with no apparent loss in its efficacy.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chun-Yan Shih ◽  
Wei-Lun Huang ◽  
I-Ting Chiang ◽  
Wu-Chou Su ◽  
Hsisheng Teng

Tuning of the nitrogen-doped graphene oxide dot and ascorbic acid concentrations can selectively kill cancer cells through either apoptosis or necrosis.


2021 ◽  
pp. 152147
Author(s):  
Siraj Ud Daula Shamim ◽  
Md Kamal Hossain ◽  
Syed Mahedi Hasan ◽  
Afiya Akter Piya ◽  
Mohammad Sadiqur Rahman ◽  
...  

2020 ◽  
Vol 335 ◽  
pp. 135699 ◽  
Author(s):  
Armin Rezanezhad ◽  
Ehsan Rezaie ◽  
Laleh Saleh Ghadimi ◽  
Abdollah Hajalilou ◽  
Ebrahim Abouzari-Lotf ◽  
...  

2018 ◽  
Vol 42 (11) ◽  
pp. 8914-8923 ◽  
Author(s):  
Baihong An ◽  
Yanan Liu ◽  
Chengcheng Xu ◽  
Han Wang ◽  
Jun Wan

Visible light responsive Fe3O4–WSe2/NG (nitrogen doped graphene oxide) heterojunction nanocomposites were synthesized by a hydrothermal synthesis route, in which Fe3O4 and WSe2 particles were coated on the surface of NG.


Sign in / Sign up

Export Citation Format

Share Document