Western European Regional Climate Scenarios in a High Greenhouse Gas World and Agricultural Impacts

Author(s):  
C. M. Goodess ◽  
J. P. Palutikof
2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


Author(s):  
Vinícius Machado Rocha ◽  
Francis Wagner Silva Correia ◽  
Prakki Satyamurty ◽  
Saulo Ribeiro De Freitas ◽  
Demerval Soares Moreira ◽  
...  

2002 ◽  
Vol 15 (9) ◽  
pp. 1036-1050 ◽  
Author(s):  
James S. Risbey ◽  
Peter J. Lamb ◽  
Ron L. Miller ◽  
Michael C. Morgan ◽  
Gerard H. Roe

MAUSAM ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 221-230
Author(s):  
O. P. SINGH ◽  
K. RUPA KUMAR ◽  
P. K. MISHRA ◽  
K. KRISHNA KUMAR ◽  
S. K. PATWARDHAN

Lkkj & bl 'kks/k&i= esa HkweaMyh; tyok;q ifjorZu ds ifj.kkeLo:i 'krkCnh ds e/; ¼2041&60½ ds nkSjku ,f’k;kbZ xzh"edkyhu ekulwu ds fof’k"V y{k.kksa dk iwokZuqeku djus ds mÌs’; ls vuqdj.k iz;ksxksa ds ifj.kke izLrqr fd, x, gSaA blds fy, gSMys tyok;q iwokZuqeku vkSj vuqla/kku dsUnz] ;w- ds- dk {ks=h; tyok;q ekWMy gSM vkj- ,e- 2 dk mi;ksx fd;k x;k gSA ,f’k;kbZ {ks= ds fy, 20 o"kksZa dh vof/k ds nks vuqdj.k iz;ksx fd, x, gSa uker% igyk] 1990 Lrjksa ds vuq:i xzhu gkml xSl lkanz.k dh fu/kkZfjr ek=k] ftls dUVªksy ¼lh- Vh- ,y-½ iz;ksx dgk x;k gS vkSj nwljk 1990 ls ysdj 2041&60 rd ds fy, xzhu gkml xSl lkanz.k ds okf"kZd feJ.k esa 1 izfr’kr dh o`f) lesr ftls vkxs xzhu gkml xSl ¼th- ,p- th-½ iz;ksx dgk x;k gSA xzhu gkml xSl lkanz.k esa okf"kZd feJ.k esa 1 izfr’kr dh o`f) tyok;q ifjorZu ds var% ljdkjh iSuy vkbZ- ih- lh- lh- }kjk rS;kj dh xbZ ;kstuk ls yh xbZ gSA bu iz;ksxksa ls 'krkCnh ds e/; ds nkSjku ,f’k;kbZ xzh"edkyhu ekulwu esa ik, tkus okys fof’k"V y{k.kksa esa gksus okys dqN ifjorZuksa dk irk pyk gS ftudk c<+s gq, ekuotfur mRltZdksa ds dkj.k gksuk LokHkkfor gSA lewph ekulwu _rq ds nkSjku Hkkjrh; {ks= ij fuEu {kksHk eaMy ¼850 gSDVkikLdy½ esa ekulwu nzks.kh ¼,e- Vh- ½ dk mRrj dh vksj lkekU; :i ls c<+uk lcls vf/kd egRoiw.kZ ifjorZu izrhr gksrk gSA vuqdj.k ifj.kkeksa ls ekulwu _rq ds nkSjku vjc lkxj esa leqnz Lrj nkc ¼,l- ,y- ih-½ esa yxHkx 1&2 gS- ik- dh o`f) dk irk pyk gS ftlds ifj.kkeLo:i fuEu {kksHk eaMy esa vlkekU; izfrpØokr gksrs gSaA bldk vFkZ ;g gqvk fd fuEu Lrjh; tsV ¼,y- ,y- ts-½ vkSj vjc lkxj esa ekulwu dh /kkjk det+ksj iM+ tkrh gSA ;g ekWMy m".krj leqnz lrg dh fLFkfr;ksa esa fgan egklkxj ds mRrj esa ekulwuh pØokrh; fo{kksHkksa dh vko`fr esa deh dks vuqdfjr djrk gS tks gky gh ds n’kdksa esa ekulwu ds vonkcksa dh vko`fr esa deh dh izo`fr;ksa ds vuq:i ikbZ xbZ gSA bu iz;ksxksa ls ;g irk pyrk gS fd ikfdLrku vkSj mlds lehiorhZ mRrjh if’peh Hkkjr ds Åij Å"ek fuEunkc rhoz gks ldrk gS vkSj ekulwu _rq           ds nkSjku FkksM+k iwoZ dh vksj c<+ ldrh gSA ;g ekWMy] Hkkjrh; leqnz ds nf{k.kh Hkkxksa esa 8° & 10° m- ds chp 100 gS- ik- ¼Vh- bZ- ts- dksj dk Lrj½ ij fo’ks"kdj ekulwu ds iwokZ)Z ds nkSjku m".kdfVca/kh; iwokZfHkeq[kh tsV¼Vh- bZ- ts-½ dks izHkkfor djrk gSA The paper presents the results of simulation experiments aimed at predicting the characteristic features of Asian Summer Monsoon during the middle of the century (2041-60) resulting from global climate change. The model used is HadRM2 regional climate model of the Hadley Centre for Climate Prediction and Research, UK. Two simulation experiments of 20 years length have been performed for the Asian domain, namely, one with a fixed amount of greenhouse gas concentration corresponding to 1990 levels called the 'control' (CTL) experiment and the other with the annual compound increase of 1 % in the greenhouse gas concentration for 2041-60 from 1990 onwards called the 'greenhouse gas' (GHG) experiment. The annual compound increment of 1 %, in the greenhouse gas concentration has been adopted from the projection given by the Intergovernmental Panel for Climate Change (IPCC). The experiments have brought out some of the changes in the characteristic features of mid-century Asian summer monsoons that are expected to occur due to increased anthropogenic emissions. The most significant change seems to be a general northward shift of the monsoon trough (MT) in the lower troposphere (850 hPa) throughout the monsoon season over the Indian region. The simulation results have shown an increase of about 1-2 hPa in the sea level pressure (SLP) over the Arabian Sea during the monsoon resulting in an anomalous anticyclone over there in the lower troposphere. This would mean the weakening of Low Level Jet (LLJ) and the Arabian sea branch of the monsoon current. The model has simulated a decrease in the frequency of the monsoonal cyclonic disturbances over the north Indian Ocean under the warmer sea surface conditions which conforms to the observed decreasing trends in the frequency of monsoon depressions in recent decades. The experiments have shown that the Heat Low over Pakistan and adjoining northwest India, may intensify and shift slightly eastward during the monsoon. The model has simulated the strengthening of Tropical Easterly Jet (TEJ) at          100 hPa (the location of TEJ core ) over the southern parts of Indian sea between 8° - 10° N, especially during the first half of the monsoon season.


Image 2.0 ◽  
1994 ◽  
pp. 79-131 ◽  
Author(s):  
H. J. M. de Vries ◽  
J. G. J. Olivier ◽  
R. A. van den Wijngaart ◽  
G. J. J. Kreileman ◽  
A. M. C. Toet

2012 ◽  
Vol 8 (5) ◽  
pp. 1599-1620 ◽  
Author(s):  
S. Wagner ◽  
I. Fast ◽  
F. Kaspar

Abstract. In this study, we assess how the anthropogenically induced increase in greenhouse gas concentrations affects the climate of central and southern South America. We utilise two regional climate simulations for present day (PD) and pre-industrial (PI) times. These simulations are compared to historical reconstructions in order to investigate the driving processes responsible for climatic changes between the different periods. The regional climate model is validated against observations for both re-analysis data and GCM-driven regional simulations for the second half of the 20th century. Model biases are also taken into account for the interpretation of the model results. The added value of the regional simulation over global-scale modelling relates to a better representation of hydrological processes that are particularly evident in the proximity of the Andes Mountains. Climatic differences between the simulated PD minus PI period agree qualitatively well with proxy-based temperature reconstructions, albeit the regional model overestimates the amplitude of the temperature increase. For precipitation the most important changes between the PD and PI simulation relate to a dipole pattern along the Andes Mountains with increased precipitation over the southern parts and reduced precipitation over the central parts. Here only a few regions show robust similarity with studies based on empirical evidence. However, from a dynamical point-of-view, atmospheric circulation changes related to an increase in high-latitude zonal wind speed simulated by the regional climate model are consistent with numerical modelling studies addressing changes in greenhouse gas concentrations. Our results indicate that besides the direct effect of greenhouse gas changes, large-scale changes in atmospheric circulation and sea surface temperatures also exert an influence on temperature and precipitation changes in southern South America. These combined changes in turn affect the relationship between climate and atmospheric circulation between PD and PI times and should be considered for the statistical reconstruction of climate indices calibrated within present-day climate data.


Sign in / Sign up

Export Citation Format

Share Document