Thermal Swing Adsorption: Regeneration, Cyclic Behavior, and Optimization

Author(s):  
M. Douglas LeVan
2008 ◽  
Vol 17 (3) ◽  
pp. 474-475
Author(s):  
Yukihiro HARADA ◽  
Kazumasa EBATO ◽  
Junpei YAGI
Keyword(s):  

1997 ◽  
Vol 35 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Shigekazu Nakano ◽  
Tomoko Fukuhara ◽  
Masami Hiasa

It has been widely recognized that trihalomethanes (THMs) in drinking water pose a risk to human health. THMs can be removed to a certain extent by the conventional point-of-use (POU) unit which is composed of activated carbon (AC) and microfilter. But it's life on THMs is relatively shorter than on residual chlorine or musty odor. To extent the life of AC adsorber, pressure and thermal swing adsorption (PTSA) was applied by preferential regeneration of chloroform. PTSA was effective to remove THMs, especially chloroform. Adsorption isotherms of chloroform at 25 and 70°C showed a remarkable difference so that thermal swing was considered effective. Chloroform was also desorbed by reducing pressure. By vacuum heating at 70°C, chloroform was almost desorbed from AC and reversible adsorption was considered possible. A prototype of POU unit with PTSA was proposed. Regeneration mode would consist of dewatering, vacuum heating and cooling (backwashing). The unit was maintained in bacteriostatic condition and could be used for a long time without changing an AC cartridge.


2021 ◽  
Author(s):  
Sabahattin Aykaç ◽  
Eray Özbek ◽  
Ali Tugrul Tankut

Author(s):  
Mohammad Reza Azadi Kakavand ◽  
Ertugrul Taciroglu

AbstractSome of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes, while a few more advanced models employ two damage variables. Models with a single variable have an inherent difficulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners, and their mutual dependencies. In the current models that adopt two damage variables, the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa. This study presents a cyclic model established by extending an existing monotonic constitutive model. The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response. The proposed model, dubbed the enhanced concrete damage plasticity model (ECDPM), is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics. Unlike most prior studies on models in the same category, the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression. The performance of the model is observed to be satisfactory. Furthermore, the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.


2021 ◽  
Vol 178 ◽  
pp. 106494
Author(s):  
Zahra Ahmadi ◽  
Ali Akbar Aghakouchak ◽  
Seyyed Rasoul Mirghaderi

2021 ◽  
Vol 183 ◽  
pp. 106737
Author(s):  
Hao Wang ◽  
Youde Wang ◽  
Zongxing Zhang ◽  
Xiaogang Liu ◽  
Shanhua Xu

2021 ◽  
Vol 5 (1) ◽  
pp. 47
Author(s):  
Iole Serena Diliberto

On the Island of Vulcano (Aeolian Archipelago, Italy) the temperatures of fumarole emissions, have ranged from about 700 °C to the boiling point. Since the end of the last eruption (1890 A.D.), many periods of increased heating of hydrothermal systems, underlying the La Fossa area have been identified, but an eruptive condition has not yet been reached. The time variation of the high temperature fumaroles has been tracked by the network of sensors located at a few discrete sites on the summit area of La Fossa cone. The same continuous monitoring network has been working for more than 30 years. The time series shows that a natural cyclic modulation has repeated after almost 20 years, and its periodicity yet has to be discussed and interpreted. The statistical approach and the spectral analysis could provide an objective evaluation to reveal the timing, intensity, and general significance of the thermodynamic perturbations that occurred in the hydrothermal circuits of La Fossa caldera, during the study period. The continuous monitoring data series avoid unrealistic interpolations and allow promptly recognizing changes, which perturb the hydrothermal circuits, highlighting—possibly in near real time—the transient phases of energy release from the different sources (hydrologic/magmatic).


Sign in / Sign up

Export Citation Format

Share Document