Ice Floods on the Lower Reach of the Yellow River and Measures for Ice Flood Prevention

Author(s):  
Cai Lin
2010 ◽  
Vol 35 (4) ◽  
pp. 381-396 ◽  
Author(s):  
Xiaohui Jiang ◽  
Angela Arthington ◽  
Liu Changming

2019 ◽  
Vol 11 (17) ◽  
pp. 4680 ◽  
Author(s):  
Lei Liu ◽  
Jianqin Ma ◽  
Xiuping Hao ◽  
Qingyun Li

To analyze the water-resource limitations for crops in irrigation districts along the lower reach of the Yellow River, we used the single-crop coefficient method provided by FAO-56 to analyze crop water demand (CWD) and irrigation water requirement (IWR) for the main crops (winter wheat, summer maize, and cotton) from 1971 to 2015. The impact of climate threats on IWR was then quantified based on the standardized precipitation evapotranspiration index (SPEI), following which the conflicts between water demand and water supply were analyzed. The results show that about 75.4% of the total annual IWR volume is concentrated from March to June. Winter wheat is the largest water consumer; it used an average of 67.9% of the total IWR volume. The study area faced severe water scarcity, and severe water deficits occurred mainly between March and June, which is consistent with the occurrence of drought. With the runoff from the Yellow River Basin further decreasing in the future, the water supply is expected to become more limited. IWR is negatively correlated with the SPEI. Based on the relationship between SPEI and IWR, the water allocation for irrigation can be planned at different timescales to meet the CWD of different crops.


2008 ◽  
Vol 21 (18) ◽  
pp. 4879-4886 ◽  
Author(s):  
Yundi Jiang ◽  
Wenjie Dong ◽  
Song Yang ◽  
Jun Ma

Abstract The authors quantitatively describe the changes in the characteristics of ice phenology including the flow rate and freeze/breakup dates of the Yellow River based on observations of the past 50 yr. In both the upper and lower reaches of the Yellow River, increasing temperature delays the freeze date and advances the breakup date, thus decreasing the number of freeze days and the expanse of river freeze. From 1968 to 2001, the freeze duration has shortened significantly by 38 days at Bayangaole and 25 days at Sanhuhe, respectively. From the early 1950s to the early 2000s, the changes in freeze and breakup dates have shortened the freeze duration in the lower reach of the Yellow River by 12 days. The flow rate has reduced from 500 to 260 m3 s−1, and the expanse of river freeze has also decreased significantly by about 310 km. In addition, in the lower reach of the river, the location of earliest ice breakup has shifted downstream significantly in the last 50 yr, although the location of earliest freeze exhibits little change.


2018 ◽  
Vol 246 ◽  
pp. 02019
Author(s):  
Hao-Ming Yang ◽  
Min Zhang ◽  
Cheng-Hui Dong

Dike strengthening by warping construction is one of the main construction modes for the standardized dike construction of mainstream and tributaries in the lower reaches of the Yellow River, and whether the drainage in the dike strengthening by warping construction is smooth is closely related to the safety of dike project. Restricted by topographic conditions and construction conditions, existing drainage schemes are not applicable to the Qinhe River (the Yellow River’s largest tributary) Flood Prevention Project Wuzhi Section, which is next to farm cottage. Therefore, in this paper a field test was carried out using three drainage schemes---“L” type PVC seepage drainage pipes through dike, “L” type perforated PVC seepage drainage pipes coated with geotextile and geotextile drainage grilles. The drainage velocity, silt retaining effect, water level in the silt area, dike body deformation and other key indicators were obtained through field monitoring, and the safety and stability of the dike strengthening by warping construction project were verified by numerical calculation. The field test results showed that the drainage effect of the “L” type perforated PVC seepage drainage pipes coated with geotextile and geotextile drainage grilles was obviously better than that of the “L” type PVC seepage drainage pipes through dike, but the geotextile drainage grilles had advantages in silt retaining effect, construction convenience, cost, and improvement. The field test results can provide a reference for the quick drainage design and construction of dike back deposited with silt of the dike strengthening by warping construction project in the Yellow River.


2004 ◽  
Vol 17 (5) ◽  
pp. 555-564 ◽  
Author(s):  
Jianyao CHEN ◽  
Yoshihiro FUKUSHIMA ◽  
Changyuan TANG ◽  
Makoto TANIGUCHI

Sign in / Sign up

Export Citation Format

Share Document