Antagonistic Effects of Lactic Acid Bacteria on Enterobacteria

1986 ◽  
pp. 100-100
Author(s):  
A. V. Gudkov ◽  
G. D. Perfiliev ◽  
N. P. Sorokina
2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


2019 ◽  
Vol 79 (3) ◽  
pp. 743-755 ◽  
Author(s):  
Sepideh Lamei ◽  
Jörg G. Stephan ◽  
Bo Nilson ◽  
Sander Sieuwerts ◽  
Kristian Riesbeck ◽  
...  

Abstract The main current methods for controlling American Foulbrood (AFB) in honeybees, caused by the bacterial pathogen Paenibacillus larvae, are enforced incineration or prophylactic antibiotic treatment, neither of which is fully satisfactory. This has led to an increased interest in the natural relationships between the pathogenic and mutualistic microorganisms of the honeybee microbiome, in particular, the antagonistic effects of Honeybee-Specific Lactic Acid Bacteria (hbs-LAB) against P. larvae. We investigated whether supplemental administration of these bacteria affected P. larvae infection at colony level over an entire flowering season. Over the season, the supplements affected neither colony-level hbs-LAB composition nor naturally subclinical or clinical P. larvae spore levels. The composition of hbs-LAB in colonies was, however, more diverse in apiaries with a history of clinical AFB, although this was also unrelated to P. larvae spore levels. During the experiments, we also showed that qPCR could detect a wider range of hbs-LAB, with higher specificity and sensitivity than mass spectrometry. Honeybee colonies are complex super-organisms where social immune defenses, natural homeostatic mechanisms, and microbiome diversity and function play a major role in disease resistance. This means that observations made at the individual bee level cannot be simply extrapolated to infer similar effects at colony level. Although individual laboratory larval assays have clearly demonstrated the antagonistic effects of hbs-LAB on P. larvae infection, the results from the experiments presented here indicate that direct conversion of such practice to colony-level administration of live hbs-LAB is not effective.


1998 ◽  
Vol 61 (9) ◽  
pp. 1210-1212 ◽  
Author(s):  
N. MULET-POWELL ◽  
A. M. LACOSTE-ARMYNOT ◽  
M. VIÑAS ◽  
M. SIMEON DE BUOCHBERG

Activity of pairs of crude extracts of lactic acid bacteria (LAB) containing different bacteriocins (nisin, pediocin AcH, lacticin 481, lactacin F, and lactacin B) was measured against 10 different indicator strains. Experiments were carried out both in liquid and on solid media. Both synergisms and antagonisms were observed. Lacticin 481 produced mainly antagonistic effects whereas pediocin AcH produced mainly synergistic effects. The use of more than one LAB bacteriocin as a combination biopreservative might be envisaged.


2002 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
E Simova ◽  
D Beshkova ◽  
A Angelov ◽  
Ts Hristozova ◽  
G Frengova ◽  
...  

2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


Author(s):  
O.A. Savkina ◽  
◽  
G.V. Ternovskoi ◽  
M.N. Lokachuk ◽  
E.N. Pavlovskaya ◽  
...  

2005 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
K. Szekér ◽  
J. Beczner ◽  
A. Halász ◽  
Á. Mayer ◽  
J.M. Rezessy-Szabó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document