scholarly journals Isolation of lactic acid bacteria from swine milk and characterization of potential probiotic strains with antagonistic effects against swine-associated gastrointestinal pathogens

2016 ◽  
Vol 62 (6) ◽  
pp. 514-524 ◽  
Author(s):  
Sandra Rayén Quilodrán-Vega ◽  
Julio Villena ◽  
José Valdebenito ◽  
María José Salas ◽  
Cristian Parra ◽  
...  

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.

2021 ◽  
Vol 62 (5) ◽  
pp. 148-156
Author(s):  
Kenji Oonaka ◽  
Naoki Kobayashi ◽  
Yosuke Uchiyama ◽  
Mioko Honda ◽  
Shiro Miyake ◽  
...  

2014 ◽  
Vol 41 (2) ◽  
pp. 570-580 ◽  
Author(s):  
Estefanía Muñoz-Atienza ◽  
Carlos Araújo ◽  
Susana Magadán ◽  
Pablo E. Hernández ◽  
Carmen Herranz ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1496
Author(s):  
Ji-Hyeon Jeon ◽  
Jaehyeok Lee ◽  
Jin-Hyang Park ◽  
Chul-Haeng Lee ◽  
Min-Koo Choi ◽  
...  

This study aims to investigate the effect of lactic acid bacteria (LAB) on in vitro and in vivo metabolism and the pharmacokinetics of ginsenosides in mice. When the in vitro fermentation test of RGE with LAB was carried out, protopanaxadiol (PPD) and protopanaxadiol (PPD), which are final metabolites of ginsenosides but not contained in RGE, were greatly increased. Compound K (CK), ginsenoside Rh1 (GRh1), and GRg3 also increased by about 30%. Other ginsenosides with a sugar number of more than 2 showed a gradual decrease by fermentation with LAB for 7 days, suggesting the involvement of LAB in the deglycosylation of ginsenosides. Incubation of single ginsenoside with LAB produced GRg3, CK, and PPD with the highest formation rate and GRd, GRh2, and GF with the lower rate among PPD-type ginsenosides. Among PPT-type ginsenosides, GRh1 and PPT had the highest formation rate. The amoxicillin pretreatment (20 mg/kg/day, twice a day for 3 days) resulted in a significant decrease in the fecal recovery of CK, PPD, and PPT through the blockade of deglycosylation of ginsenosides after single oral administrations of RGE (2 g/kg) in mice. The plasma concentrations of CK, PPD, and PPT were not detectable without change in GRb1, GRb2, and GRc in this group. LAB supplementation (1 billion CFU/2 g/kg/day for 1 week) after the amoxicillin treatment in mice restored the ginsenoside metabolism and the plasma concentrations of ginsenosides to the control level. In conclusion, the alterations in the gut microbiota environment could change the ginsenoside metabolism and plasma concentrations of ginsenosides. Therefore, the supplementation of LAB with oral administrations of RGE would help increase plasma concentrations of deglycosylated ginsenosides such as CK, PPD, and PPT.


Author(s):  
Pamela Mancha-Agresti ◽  
Mariana Martins Drumond ◽  
Fillipe Luiz Rosa do Carmo ◽  
Monica Morais Santos ◽  
Janete Soares Coelho dos Santos ◽  
...  

2009 ◽  
Vol 75 (10) ◽  
pp. 3146-3152 ◽  
Author(s):  
Niamh Toomey ◽  
�ine Monaghan ◽  
S�amus Fanning ◽  
Declan Bolton

ABSTRACT Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model. All transconjugants were confirmed by Etest, PCR, pulsed-field gel electrophoresis, and Southern blotting. The in vitro filter mating method demonstrated high transfer frequencies between all LAB pairs, ranging from 1.8 � 10−5 to 2.2 � 10−2 transconjugants per recipient. Transconjugants were detected in the rumen model for all mating pairs tested; however, the frequencies of transfer were low and inconsistent over 48 h (ranging from 1.0 � 10−9 to 8.0 � 10−6 transconjugants per recipient). The plant model provided an environment that appeared to promote comparatively higher transfer frequencies between all LAB pairs tested over the 9-day period (transfer frequencies ranged from 4.7 � 10−4 to 3.9 � 10−1 transconjugants per recipient). In our test models, dairy cultures of LAB can act as a source of mobile genetic elements encoding antibiotic resistance that can spread to other LAB. This observation could have food safety and public health implications.


2020 ◽  
Author(s):  
Blanca Rosa Aguilar Uscanga ◽  
Ariana Rodríguez Arreola ◽  
Josué R. Solís Pacheco ◽  
Monique Lacroix ◽  
Edgar Balcazar López ◽  
...  

2007 ◽  
Vol 2 (1) ◽  
pp. 22
Author(s):  
Enok Sobariah ◽  
Ali Khomsan ◽  
Ingrid S. Surono

<p class="MsoNormal" style="margin: 0cm 12.45pt 6pt 17.85pt; text-align: justify;"><span style="font-size: 10pt;" lang="en-us" xml:lang="en-us">The aim of this study were  to identify the in-vitro tolerance of pro-biotic bacteria to acid and bile salt condition; and  to prove a hypothesis that the supplementation of oxygenated water has a positive effect on the body weight of rat and on viability of pro-biotic bacteria.  The first study was carried out at PAU Laboratory of Bogor Agricultural University, while the second study was conducted at Department of Community Nutrition of Bogor Agricultural University and Microbiology Laboratory of Indonesia Institute of Technology. Forty five rats aged 6 weeks were divided into three groups, i.e., control group without probiotic (a0), Lactobacillus casei Shirota (a1), and Lactobacillus IS-7257 (a2).  Each group (consisting of 5 rats each) has three different treatments, namely, control without oxygenated water (b0), 50 ppm oxygenated water (b2), and 80 ppm oxygenated water (b2). Oxygenated water was administered to the rats twice a day in the morning (3.25 ml) and afternoon (3.00 ml). Observation was carried out on the body  weight of the rats, fecal lactic acid bacteria, coliform, and anaerob bacteria by plate counting, for 4 periods, i.e, prior to the treatment (C0), after three-day treatment (C1), after seven-day treatment (C2), and on the 10<sup>th</sup> day treatment or three days after washed out period. The results indicated that probiotic bacteria are resistant to acid and bile acid condition. Oxygen concentration in water has a significant positive influence on the body weight of rats towards viability of probiotic bacteria (p-level &lt; 0.05).  The supplementation of  oxygenated water 50 ppm significantly increase the population of viable fecal lactic acid bacteria in L. casei Shirota and Lactobacillus IS-7257 groups after 3 and 7 days of treatment.  Lactobacillus IS-7257 gave better response than L. casei Shirota. The supplementation of oxygenated water 80 ppm significantly reduces the fecal coliform in-vivo in both L. casei Shirota and Lactobacillus IS-7257 groups (p-level &lt; 0.05).</span></p>


2009 ◽  
Vol 6 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Ryoichi Shin ◽  
Momoyo Suzuki ◽  
Takeo Mizutani ◽  
Nobuyuki Susa

The effects of lactic acid bacteria-fermented soybean extract (Biofermentics™; BF) on experimental models of hepatic and renal disorders were investigatedin vivoandin vitro. In rat, hepatitis induced by feeding of deoxycholic acid (DCA, 0.5 wt/wt,n= 6) or intraperitoneal injection ofd-galactosamine (GMN, 500 mg/body wt,n= 6), the increase in serum AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels were inhibited significantly (P< 0.05) by feeding a diet containing 5% dried BF. Moreover, the BF-administered rat group showed lower concentrations of blood urea nitrogen and a larger amount of urine as compared with values in the control group. Pretreatment of primary cell cultures of rat hepatic and renal cells with BF prior to exposure to dichromate (K2Cr2O7) resulted in a marked decrease of dichromate-induced cytotoxicity as evaluated by the leakage of lactate dehydrogenase The levels of dichromate-induced lipid peroxidation, as monitored by malondialdehyde formation, were also reduced by pretreatment of hepatocytes with BF. These results suggest that BF may play a role in hepatic and renal disorders, and may be useful for maintaining health in humans as well.


Sign in / Sign up

Export Citation Format

Share Document