Examples of Ion Bombardment Effects On Film Growth and Erosion Processes — Plasma and Beam Experiments

Author(s):  
Eric Kay
2000 ◽  
Vol 647 ◽  
Author(s):  
K. Deenamma Vargheese ◽  
G. Mohan Rao

AbstractIon bombardment during thin film growth is known to cause structural and morphological changes in the deposited films and thus affecting the film properties. These effects can be due to the variation in the bombarding ion flux or their energy. We have deposited titanium nitride films by two distinctly different methods, viz. Electron Cyclotron Resonance (ECR) plasma sputtering and bias assisted reactive magnetron sputtering. The former represents low energy (typically less than 30 eV) but high density plasma (1011cm−3), whereas, in the latter case the ion energy is controlled by varying the bias to the substrate (typically a few hundred volts) but the ion flux is low (109cm−3). The deposited titanium nitride films are characterized for their structure, grain size, surface roughness and electrical resistivity.


2015 ◽  
Vol 7 (2) ◽  
pp. 1823-1828
Author(s):  
Asim Aijaz ◽  
Zaheer Uddin

Hydrogenated amorphous carbon (a-C:H) thin film growth using plasma-assisted deposition is studied using Monte Carlo based simulation. The effect of energetic bombardment of the ionized depositing species as well as ionized buffer gas species on the film growth and the resulting film properties is investigated. The ion energies that assist the a-C:H film growth from low density structures to high density structures such as diamond-like carbon (DLC) are used and the effect of energy and composition of the depositing species on the C-C and C-H bonding and the film structure are analyzed. It is found that the ion bombardment favors the formation of a-C:H films with low H contents, high density and superior mechanical strength of the resulting thin films and is therefore an effective way to tailor-made a-C:H thin film growth for specific applications.


2017 ◽  
Vol 121 (1) ◽  
pp. 013301
Author(s):  
K. S. A. Butcher ◽  
P. T. Terziyska ◽  
R. Gergova ◽  
V. Georgiev ◽  
D. Georgieva ◽  
...  

2008 ◽  
Vol 136 ◽  
pp. 133-138 ◽  
Author(s):  
Satreerat K. Hodak ◽  
T. Seppänen ◽  
Sukkaneste Tungasmita

The ternary nitride (Zr,Ti)N thin films were grown on silicon substrates by ion-assisted dual d.c. reactive magnetron sputtering technique. The substrates were exposed to ion bombardment with varying kinetic energy in the range of 3-103 eV under N/Ar ratio of 1:3. The (Zr0.6Ti0.4)N was formed at all growth conditions. X-ray diffraction measurement indicates the presence of (Zr,Ti)N solid solution with (111) and (200) preferred orientations. The (200) orientation is only present when the films are grown at ion bombardment energies higher than 33 eV. Optimum conditions for film growth produced hardness in the range of 27-29 GPa.


1999 ◽  
Vol 585 ◽  
Author(s):  
Y. Iijima ◽  
M. Kimura ◽  
T. Saitoh

AbstractBiaxially aligned film growth by dual-ion-beam sputtering methods were studied for fluorite type (Zr0.85Y0.15O1.93(YSZ), Hf0.74Yb0.26O1.87, CeO2), pyrochlore type (Zr2Sm2O7), and rare-earth C type (Y2O3, Sm2O3) oxides on polycrystalline Ni-based alloy substrates. Cubetextured (all axes aligned with a <100> axis substrate normal) films were obtained for fluorite and pyrochlore ones by low energy (<300 eV) ion bombardment at low temperatures (< 300 °C). Besides, cube textured Y2O3 films were obtained in far narrower conditions with a quite low energy (150 eV)-ion bombardment at the temperature of 300 °C. The assisting ion energy dependence was discussed in connection with lattice energies for these oxide crystals.


Sign in / Sign up

Export Citation Format

Share Document