DC voltage fields generated by RF plasmas and their influence on film growth morphology through static attraction to metal wetting layers: Beyond ion bombardment effects

2017 ◽  
Vol 121 (1) ◽  
pp. 013301
Author(s):  
K. S. A. Butcher ◽  
P. T. Terziyska ◽  
R. Gergova ◽  
V. Georgiev ◽  
D. Georgieva ◽  
...  
2000 ◽  
Vol 647 ◽  
Author(s):  
K. Deenamma Vargheese ◽  
G. Mohan Rao

AbstractIon bombardment during thin film growth is known to cause structural and morphological changes in the deposited films and thus affecting the film properties. These effects can be due to the variation in the bombarding ion flux or their energy. We have deposited titanium nitride films by two distinctly different methods, viz. Electron Cyclotron Resonance (ECR) plasma sputtering and bias assisted reactive magnetron sputtering. The former represents low energy (typically less than 30 eV) but high density plasma (1011cm−3), whereas, in the latter case the ion energy is controlled by varying the bias to the substrate (typically a few hundred volts) but the ion flux is low (109cm−3). The deposited titanium nitride films are characterized for their structure, grain size, surface roughness and electrical resistivity.


1991 ◽  
Vol 232 ◽  
Author(s):  
Tadashi Yogi ◽  
Thao A. Nguyena ◽  
Steven E. Lambert ◽  
Grace L. Gorman ◽  
Gil Castillo

ABSTRACTThe magnetic and recording characteristics of Co-based thin film media are strongly influenced by microstructure. The media microstructural characteristics, in turn, depend on sputtering conditions of underlayers and magnetic layers. The role of Cr underlayer thickness and sputtering pressure have been reported previously. The present work examines the growth morphology and recording properties of a CoPtCr alloy on Cr underlayers where the deposition conditions such as sputtering pressure and rf bias were independently varied for the Cr underlayer and the magnetic layer. We find that the growth morphology of the magnetic layer is governed primarily by the deposition condition of the Cr underlayer. In particular, increased sputtering pressure for the Cr underlayer produces columnar morphology which induces isolation of the grains in the magnetic layer. This results in a significant reduction in the recording noise due to reduced intergrain exchange coupling. On the other hand, the application of ff bias during the deposition of the magnetic layer promotes more continuous magnetic grains, thereby increasing the recording noise. The observed trends in microstructure and recording noise can be understood qualitatively in terms of Thornton's microstructure diagram and the competition between micromorphological roughness and adatom mobility during the film growth.


2012 ◽  
Vol 571 ◽  
pp. 564-568
Author(s):  
Zhi Dan Yan ◽  
Li Dong Sun ◽  
Chun Guang Hu ◽  
Xiao Tang Hu ◽  
Peter Zeppenfeld

Deposition temperature is a key factor influencing the growth morphology of thin-films, aiming at this phenomenon, a precise control system of deposition temperature in ultra-high vacuum is developed in the paper. It can realize accurate temperature control in a range of 150K to 450K during experiment by combination of resistance heating up and liquid helium cooling down strategies, which is benefit to further understand the temperature-depended mechanism of organic molecule thin-film growth. Besides, it is experimentally studied that the growth morphology of p-6p molecules on a mica substrate is closely related to the substrate deposition temperature, indicating that the length of p-6p nano-fibers is proportional to the deposition temperature, while their distribution density is inversely proportional to the temperature.


2007 ◽  
Vol 4 (7) ◽  
pp. 2285-2288 ◽  
Author(s):  
M. Wintrebert-Fouquet ◽  
K. S. A. Butcher ◽  
P. P.-T. Chen ◽  
R. Wuhrer

2015 ◽  
Vol 7 (2) ◽  
pp. 1823-1828
Author(s):  
Asim Aijaz ◽  
Zaheer Uddin

Hydrogenated amorphous carbon (a-C:H) thin film growth using plasma-assisted deposition is studied using Monte Carlo based simulation. The effect of energetic bombardment of the ionized depositing species as well as ionized buffer gas species on the film growth and the resulting film properties is investigated. The ion energies that assist the a-C:H film growth from low density structures to high density structures such as diamond-like carbon (DLC) are used and the effect of energy and composition of the depositing species on the C-C and C-H bonding and the film structure are analyzed. It is found that the ion bombardment favors the formation of a-C:H films with low H contents, high density and superior mechanical strength of the resulting thin films and is therefore an effective way to tailor-made a-C:H thin film growth for specific applications.


1997 ◽  
Vol 56 (2) ◽  
pp. 1522-1530 ◽  
Author(s):  
Chung-Yu Mou ◽  
J. W. P. Hsu

Sign in / Sign up

Export Citation Format

Share Document