Spectroscopy as a Tool to Probe Laser Initiation of Primary Explosives

Author(s):  
M. W. Leeuw ◽  
A. J. Th. Rooijers ◽  
A. C. Steen
Keyword(s):  
2021 ◽  
Vol 139 ◽  
pp. 106989
Author(s):  
Wencai Bai ◽  
Wenzhi Qin ◽  
Duo Tang ◽  
Faming Ji ◽  
Huisan Chen ◽  
...  

2021 ◽  
Vol 114 (1-2) ◽  
pp. 117-130
Author(s):  
Wai Jun Lai ◽  
Supriyo Ganguly ◽  
Wojciech Suder

AbstractLaser keyhole initiation and termination-related defects, such as cracking and keyhole cavities due to keyhole collapse, are a well-known issue in laser keyhole welding of thick section steels. In longitudinal welding, run-on and run-off plates are used to avoid this problem. However, such an approach is not applicable in circumferential welding where start/stop defects remain within the workpiece. These issues can hinder industry from applying laser keyhole welding for circumferential welding applications. In this paper, the effect of inter-pass temperature on laser keyhole initiation and termination at the weld overlap start-stop region was investigated. This study has identified that defects occurring within this region were due to laser termination rather than laser initiation because of keyhole instabilities regardless of the thermal cycle. The laser termination defects were mitigated by applying a laser defocusing termination regime to reduce the keyhole depth gradually and control the closure of the keyhole.


2018 ◽  
Vol 924 ◽  
pp. 269-272 ◽  
Author(s):  
Shinichi Mae ◽  
Takeshi Tawara ◽  
Hidekazu Tsuchida ◽  
Masashi Kato

For high voltage SiC bipolar devices, carrier lifetime is an important parameter, and for optimization of device performance, we need to control distribution of the carrier lifetime in a wafer. So far, there have been limited systems for depth-resolved carrier lifetime measurements without cross sectional cut. In this study, we adopted a free carrier absorption technique and made local overlapping of the probe laser light with excitation laser light to develop depth-resolved carrier lifetime measurements. We named the developed system a microscopic FCA system and demonstrated measurement results for samples with and without intentional carrier lifetime distribution.


1994 ◽  
Vol 48 (5) ◽  
pp. 616-619 ◽  
Author(s):  
Bobby J. Stanton ◽  
E. T. Monroe ◽  
E. L. Wehry

The two-laser “pump-probe” photolytic fragmentation fluorescence spectrometry of three octenes and two nonenes is described. Probe-laser-induced C2 fluorescence (Deslandres-d'Azambuja system, C1II g→ A1II u) is detected. The relative C2 fluorescence intensity and spectral patterns exhibited by each alkene are strongly dependent on the probe-laser wavelength. The dependence of the fragment fluorescence intensity on the probe-laser fluence implies that the “probe” laser induces photofragmentation of intermediate species produced by the “photolysis” laser.


2007 ◽  
Author(s):  
M. D. Bowden ◽  
M. Cheeseman ◽  
S. L. Knowles ◽  
R. C. Drake

Author(s):  
Paul M. Jones ◽  
Joachim Ahner ◽  
Christopher L. Platt ◽  
Huan Tang ◽  
Julius Hohlfeld

A pump-probe experimental technique that incorporated a 527nm wavelength pump laser and a 476nm probe laser was applied to a magnetic storage disk having a magnetic layer comprised of a FePt alloy and coated with a hydrogenated carbon overcoat (COC). The pump laser power was systematically increased while sweeping the applied field with an electromagnet to observe the temperature dependent magnetization, which is proportional to the change in the polarization of the reflected beam. In this way the laser power required to heat the media to the Curie temperature (Tc) was determined, with the Curie temperature of the media determined from a separate magnetometry measurement. Such a single point laser power-to-media temperature calibration allowed the determination of the media temperature over a small laser power range near Tc. The carbon over-coated FePt media was then irradiated for varying durations at temperatures pertinent to a Heat Assisted Magnetic Recording (HAMR) device [1]. The COC surface topography and carbon bonding structure within each irradiated zone was probed with AFM and micro-spot Raman. A subtle, systematic temperature and duration dependent change in the COC was observed. With increasing temperature and duration, the Raman D-peak became increasingly pronounced, signaling an increase of the sp2 (disorder) content in the film in the irradiated region. At incrementally higher temperatures, the loss of the carbon overcoat becomes apparent as a shallow depression in the COC film in the irradiated area. A clearer picture of the possible sensitivity and kinetics of the loss of COC on the HAMR media surface was obtained by measuring its loss over a range of irradiation temperatures and durations. The activation energy and COC loss rate were obtained and a possible mechanism for COC failure-loss was discussed within the bounds of the operating HAMR device [2].


2013 ◽  
Vol 52 (5) ◽  
pp. 1076 ◽  
Author(s):  
Yong Zhang ◽  
Shuyun Wang ◽  
Qing Yu ◽  
Dayun Wang ◽  
Ming Liu ◽  
...  

Author(s):  
B P Aduev ◽  
A A Zvekov ◽  
D R Nurmukhametov ◽  
A P Nikitin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document